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IMPROVEMENT IN ACCURACY OF NATURAL 

FREQUENCY DETERMINATION BASED ON THE 

ENVELOPE OF CROSS-CORRELATION 

FUNCTION 

This paper presents a method of improvement of the accuracy in natural fre-

quency determination when having impulse responses from impact testing.  

A new method is used for obtaining impulse response spectrum. The improve-

ment in natural frequency determination is a result of improving the spectral 

resolution. For this, the new method uses calculation of surface area under the 

envelope of the cross-correlation function. This process is repeated by single-

harmonic signal generated step-by-step with frequency changed iteratively. 

Thus the frequency resolution of determined spectrum is independent of length 

of analysed impulse response. 
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1. Introduction 

The use of natural frequency as a diagnostic parameter in structural as-

sessment procedures using vibration monitoring is widely applied. Changes in 

natural frequencies are called the classical damage indicators. They are the 

most used damage indicators both formerly and nowadays. The natural fre-

quencies are sensitive to all kinds of damage [1]. In fact, natural frequencies 

are sensitive indicators of structural integrity. An analysis of periodical fre-

quency measurements can be used to monitor structural condition [2]. The 

existence of a crack causes reductions in natural frequencies. The value in nat-

ural frequency shifts can reach from tens of Hz to a few Hz [3, 4]. Examina-

tion of the change in natural frequencies allows an estimation of both the loca-

tion and size of the crack [5]. Using the fast Fourier transform (FFT) spectral 

resolution is fixed as an inverse of the duration of the recorded signal [6, 7]. 
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Then, measurements of natural frequency particularly from short impulse res-

ponses are encumbered with errors. 

One of the way to improve the frequency resolution is interpolation. It 

improves the resolution by a few orders [7, 8]. In order to avoid the limitation 

in the frequency resolution using FFT, Cawley and Adams investigated this  

problem and showed that it was possible to obtain frequency resolution of 

one-tenth of the spacing between the frequency points produced by the Fourier 

transform [9]. The other way for increasing frequency resolution of the spec-

trum and improving frequency estimation is zero-padding technique [10, 11]. 

The cross-correlation function has been used to correlate signal from im-

pact testing to sine wave. In addition, the Hilbert transform has been used to 

obtain the envelope of the cross-correlation function [12, 13]. The results of 

previous investigations have shown that the surface area under the envelope of 

cross-correlation function has its local highest value in the case of equality of 

any harmonic between analyzed signal and reference single-harmonic signal. 

This way, the new procedure results the spectrum with own frequency resolu-

tion, e.g. tens of times increased in regard to classical FFT. 

2. Reading natural frequency from 3-dof system impulse  

response 

An essence of the proposed cross-correlation-envelope method (CCEM) 

for enhancement the spectral resolution is to correlate recorded impulse  

response signal y(k) to sine waves generated within a step in frequency r. In 

this way, r value constitutes spectral resolution when calculating a surface 

area under the envelope of the cross-correlation function. The algorithm is 

presented in Fig. 1. Symbol dt means a sampling period as the inverse of sam-

pling frequency fs (dt = 1/fs). When algorithm is stopped a plot of the surface 

area within frequency fi makes a spectrum with resolution r. The spectrum 

involves frequencies from 0 Hz to fs/2 Hz. 

The unit impulse response function of a multi degree-of-freedom sys-

tem can be expressed as follows [14]: 

∑
1

)sin()exp()(
n

r

drrr ttAth
=

−= ωσ  (1) 

where: Ar - the rth modal constant, σr - the rth modal damping, ωdr - the rth 

damped angular frequency of the system. Three degree-of-freedom (3-dof) 

system impulse response h(t) is considered in this section, n = 3, see Eq. 1. For 

instance, it could be an impulse response of a model of mechanical system in 

the form of the mass-spring system. To obtain the time history of the signal, 

the values of parameters of impulse response have been randomized. As an 
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example, amplitudes reached the values from 0.5 to 1.0, damping from 500 to 

600 and frequencies from 3000 to 15000 Hz, where ω = 2πf.   

 

Fig. 1. Diagram of the method for obtaining 

the spectrum with resolution r 

The analyzed signal has been synthesized numerically by sampling fre-

quency equal to 65536 Hz and 1024 samples in length. Hence, frequency reso-

lution by using FFT is 64 Hz. The exemplary impulse response signal under 

consideration is shown in Fig. 2. The proposed method of obtained spectrum  

can be utilized by the same resolution that FFT produces (64 Hz) but it also 

makes a possibility to have the spectral resolution much higher without in-

creasing the signal length. Spectra obtained using FFT and CCEM are shown 

in Fig. 3. A set of calculations and measurements for three cases of random 

signal parameters values is shown in Table 1 and 2. Here, the results also in-
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clude two types of spectrum obtaining,  i.e. FFT and CCEM by 8

spectral resolution. 

Fig. 2. Exemplary 3-dof system impulse response

Fig. 3. Impulse response spectra obtained using FFT (top) 

and CCEM (bottom) 

Table 1. Real frequencies 

Case f1 [Hz] f2 [Hz] 

1 3957.17 10485.38 

2 3035.71 10849.13 

3 3706.05 10031.83 

 
Table 2. Measured frequencies using FFT and CCEM

Case Method f1 [Hz] 

1 

FFT 3968 

CCEM, ∆f = 8Hz 3960 

CCEM, ∆f = 1Hz 3958 

2 

FFT 3008 

CCEM, ∆f = 8Hz 3040 

CCEM, ∆f = 1Hz 3037 

3 

FFT 3712 

CCEM, ∆f = 8Hz 3704 

CCEM, ∆f = 1Hz 3707 
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clude two types of spectrum obtaining,  i.e. FFT and CCEM by 8 Hz and 1 Hz 

 

dof system impulse response 

 

Fig. 3. Impulse response spectra obtained using FFT (top) 

f3 [Hz] 

14800.28 

14933.99 

14276.92 

ies using FFT and CCEM 

f2 [Hz] f3 [Hz] 

10496 14784 

10488 14800 

10486 14800 

10816 14912 

10848 14936 

10849 14934 

10048 14272 

10032 14280 

10032 14277 
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Fig. 4. Absolute differences 

for 1st, 2nd and 3rd case

The best accuracy of frequency determination has been obtained for 

CCEM by frequency resolution equal to 1

differences between real and measured frequencies obtained using FFT 

reached a range from 5 Hz to over 30

tween real and measured frequencies obtained using CCEM with 1

tion  reached from nearly 0 Hz to about

cy determination using CCEM is several or even 

using FFT. 

3. Reading natural frequency from

response in the presence of noise

Impulse response of 3-dof system 

signal-to-noise ratios (SNR) given as follows:

n

s

dB A

A
lg20SNR =  

where As and An mean root mean square (RMS) of an analyzed signal and 

RMS of a noise, respectively [15]. To obtain the time history of impulse r

sponse, the values of parameters in Eq. 2 have been randomized at the same 

ranges as presented in section 3. The noised impulse res

lated with the same sampling frequency and samples in length as in section 3. 

The noised impulse responses of 3-dof system are shown in Fig. 5. Spectra of 

considered impulse responses are shown in Figs. 6

and measured frequencies obtained using FFT have reached the same values 

20 dB and 40 dB of SNR (Table 3)
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Absolute differences between real and measured frequencies 

for 1st, 2nd and 3rd case 

The best accuracy of frequency determination has been obtained for 

CCEM by frequency resolution equal to 1 Hz, see Fig. 4 – black bar. Absolute  

differences between real and measured frequencies obtained using FFT 

Hz to over 30 Hz. However, absolute differences be-

tween real and measured frequencies obtained using CCEM with 1 Hz resolu-

about 1.3 Hz. Thus, the accuracy of frequen-

cy determination using CCEM is several or even dozens of times higher than 

Reading natural frequency from 3-dof system impulse  

in the presence of noise 

dof system has been noised with 20 dB and 40 dB 

noise ratios (SNR) given as follows: 

(2) 

root mean square (RMS) of an analyzed signal and 

RMS of a noise, respectively [15]. To obtain the time history of impulse re-

sponse, the values of parameters in Eq. 2 have been randomized at the same 

ranges as presented in section 3. The noised impulse responses has been calcu-

lated with the same sampling frequency and samples in length as in section 3. 

dof system are shown in Fig. 5. Spectra of 

considered impulse responses are shown in Figs. 6-7. Differences between real 

d measured frequencies obtained using FFT have reached the same values 

. In this cases, differences are in the range 



328  A. Kotowski 

from 22 Hz to 33 Hz, see Fig.8. By using CCEM, differences between real and 

measured frequencies have reached the range of 10.3-13.2 Hz for 20 dB of 

SNR and the range of 0.1-3.3 Hz for 40 dB of SNR. Once again, the accuracy 

of frequency determination using CCEM is several or even tens of times high-

er than using FFT. 

  

Fig. 5. Noised 3-dof system impulse response with 20dB (left) and 40dB (right) of SNR 

 

Fig. 6. Spectra of noised impulse response with 20dB  

of SNR obtained using FFT (top) and CCEM (bottom) 

 

Fig. 7. Spectra of noised impulse response with 40dB  

of SNR obtained using FFT (top) and CCEM (bottom) 
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Table 3. Real and measured frequencies in the 

case of 20dB and 40dB of SNR 

f1 [Hz] f2 [Hz] f3 [Hz] 

Real 

3035.71 10849.12 14933.99 

Measured using FFT, SNR=20dB 

3008 10816 14912 

Measured using CCEM, SNR=20dB 

3046 10836 14945 

Measured using FFT, SNR=40dB 

3008 10816 14912 

Measured using CCEM, SNR=40dB 

3039 10849 14936 

 

 

Fig. 8. Absolute differences in Hz between real and meas-

ured frequencies by 20dB and 40dB of SNR 

4. Results for the case of integer and non-integer frequency  

resolution multiplication 

In this section, spectral analysis of impulse response of single-degree-of-

freedom (SDOF) system for different damped frequency being the multiplica-

tion of frequency resolution is presented. For this case damped frequency of 

SDOF system is considered in the following form 

fΔzfΔkf d +=  (3) 

where ∆f is the frequency resolution, k is a factor for integer multiplication of 

the frequency resolution (k = 1, 2, 3,…) and z is a factor within the range 0 to 

1. To obtain the impulse responses, factor k has been changed from 91 to 100. 

By setting z factor, frequency fd can obtain the values as the non-integer mul-

tiplication of the frequency resolution. In this way, frequency fd will be within 

the range of 5824Hz to 6464Hz. The analyzed impulse responses have been 
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synthesized numerically by sampling frequency equal to 65536 Hz and 1024 

samples in length. Hence, the frequency resolution by using FFT is unchang

able and equal to ∆fFFT = 65536/1024

by using CCEM can be fixed in an

signal length, e.g. ∆fCCEM = 1 Hz. Exemplary impulse response of

tem is shown in Fig. 9. 
 

Fig. 9. SDOF system impulse response 

The results from No. 1 to 10 (Table 4)

teger multiplication of the frequency resolution there is no difference between 

real and measured frequency using both methods (FFT, CCEM). 

A completely different status is by non

resolution. Difference between real and measured frequency depends on 

factor significantly when using FFT (Fig.

Fig. 10. Absolute differences between real and measured fr

quencies as a function of z factor 

A. Kotowski 

synthesized numerically by sampling frequency equal to 65536 Hz and 1024 

frequency resolution by using FFT is unchange-

65536/1024 = 64Hz, while the frequency resolution 

in an arbitrary way, regardless of the recorded 

Hz. Exemplary impulse response of SDOF sys-

 

(Table 4) have shown that in the case of in-

frequency resolution there is no difference between 

real and measured frequency using both methods (FFT, CCEM).  

tus is by non-integer multiplication of the frequency  

ifference between real and measured frequency depends on z  

when using FFT (Fig. 10). 

 
. Absolute differences between real and measured fre-



Improvement in accuracy of natural frequency determination… 331 

Table 4. Real and measured frequencies using FFT and CCEM for in-

teger and non-integer multiplication of the frequency resolution 

No. k z 
Real frequency 

[Hz] 

Measured frequency 

[Hz] 

FFT CCEM 

1 91 0.0 5824 5824 5824 

2 92 0.0 5888 5888 5888 

3 93 0.0 5952 5952 5952 

4 94 0.0 6016 6016 6016 

5 95 0.0 6080 6080 6080 

6 96 0.0 6144 6144 6144 

7 97 0.0 6208 6208 6208 

8 98 0.0 6272 6272 6272 

9 99 0.0 6336 6336 6336 

10 100 0.0 6400 6400 6400 

11 100 0.1 6406.4 6400 6407 

12 100 0.2 6412.8 6400 6413 

13 100 0.3 6419.2 6400 6420 

14 100 0.4 6425.6 6400 6426 

15 100 0.5 6432.0 6400 6432 

16 100 0.6 6438.4 6464 6439 

17 100 0.7 6444.8 6464 6445 

18 100 0.8 6451.2 6464 6451 

19 100 0.9 6457.6 6464 6458 

20 100 1.0 6464.0 6464 6464 

 

Maximum difference then is a half of the frequency resolution ∆fFFT =  

= 32 Hz. In the case of the use of CCEM, differences between real and mea- 

sured frequencies are far lower in comparison to FFT measurements. Then, 

maximum difference is 0.8Hz (Fig. 10 black bar). 

5. Conclusions 

The use of cross-correlation function and its envelope allows to obtain 

signal spectrum. The proposed non-Fourier method for accurate measurement 

of natural frequency is comprised of the process of calculation of cross- 

-correlation function between the impulse response signal and sine wave. 

Then, a surface area under the envelope of the cross-correlation function is 

calculated. The frequency resolution in this method is regardless of the signal 

length and can be adjusted. Thus, the frequency resolution can be increased 

significantly and the accuracy of determination of natural frequencies can be 

improved. The examples have shown that the proposed method gives much 
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higher accuracy in frequency determination beside FFT, also in the presence 

of noise. The results in the case of integer and non-integer frequency resolu-

tion multiplication have indicated advantages of the presented method. 
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POPRAWA DOKŁADNOŚCI WYZNACZANIA CZĘSTOTLIWOŚCI 

DRGAŃ WŁASNYCH W OPARCIU O OBWIEDNIĘ FUNKCJI 

KORELACJI WZAJEMNEJ 

 
S t r e s z c z e n i e  

Praca przedstawia sposób poprawy dokładności wyznaczania częstotliwości drgań wła-

snych mając odpowiedzi z badań impulsowych. Nowej metody używa się w celu znalezienia 

widma odpowiedzi impulsowej. Poprawa wyznaczania częstotliwości drgań własnych jest wy-

nikiem poprawy rozdzielczości widmowej. W tym celu nowa metoda wyznacza pole po-

wierzchni pod obwiednią funkcji korelacji wzajemnej. Proces ten dokonuje się cyklicznie 

włącznie z generacją fali harmonicznej krok po kroku wraz z iteracyjną zmianą jej częstotliwo-

ści. W ten sposób, rozdzielczość częstotliwościowa wyznaczanego widma jest niezależna od 

długości analizowanej odpowiedzi impulsowej.  

 

Słowa kluczowe: częstotliwość drgań własnych, wyznaczanie, poprawa, obwiednia 
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