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THE PENETRATION OF THE SOUND FIELD
OF THE SPHERICAL RADIATOR THROUGH
THE PLANE ELASTIC LAYER

In this paper the results of exact solution ofakisymmetric problem of the pene-

tration of the sound field through the plane etaltyer are presented. The spheri-
cal radiator is located in a thin unclosed sphésball as the source of the acous-
tic field. Using appropriate theorems, the solutdéthe boundary conditions prob-

lem is reduced to solve dual functions in Legesdpelynomials, which are con-

verted to the infinite system of linear algebrajuations of the second kind with

a completely continuous operator. The influencesarhe parameters of the prob-
lem on the value of the coefficient of shieldingisd field is investigated.

Keywords: elastic plate, sound field, spherical radiator

1. Introduction

The research of the distribution of the sound waves in elastitonment
has a great importance in medical diagnostics, in the underagiestics and
in the seismology, etc. [1-3]. Sandler and Maev [4] consideregritidem of
calculating the propagation of acoustic waves within an igedtopic multi-
layer plate structure. Exploring this problem by examining #yepaths of the
multiple reflections within the plate structure, it is pbksito show that upon
careful consideration many of these paths will travel equivalistances in time
and space becoming coincident. The solution of a problem of dispefsin
spherical sound wave on a multilayered uniform firm plate cacoheolidated
to system of the algebraic equations [5]. Results of researdistobution of
sound waves in poorly connected acoustic layers with rigid borders aratptese
by Gortinskaja and Popov [6]. For the solution of the Helmholtz teaquavith
Neumann’s boundary conditions the method of coordination of asymptstic d
composition of solutions of regional problems is used.
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University of Grodno, 22 Ozheshko St., 230023 Gomdelarus, e-mail: g_shu@tut.by
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Yan and Zhao [7] considered the inverse problem of the scattefing
a plane acoustic wave by a multilayered scatterer. These\seattering prob-
lem is analysed as the problem of determining the shape oftidagered scat-
terer by measurements of the far field patterns of acoustateotromagnetic
scattered waves. Transfer matrix technique is used by Vdslaatt Gupta [8]
to study the layered materials. The effects of frequency, ppresigle of inci-
dence, layer thickness and number of layers on the energg &atd surface
impedance are studied for different configurations of theréayenaterials. In
recent study Kiselyova and Shushkevich [9] considered the solitiarprob-
lem on penetration of a sound field through of system permgudhes. As
a source of a field the spherical radiator located in a thirclesed spherical
cover is considered. The layers of the plate are made up of abestia materi-
als (linear, homogeneous, isotropic, non dispersive) with known nigtar&am-
eters, and the plates are assumed to be bonded such that theestéafiow the
perfectly bonded boundary conditions [10, 11].

The aim of the paper is construct the exact solution of tieyrarmetric
problem of the penetration of the sound field through the flat elster. The
influence of some parameters of the problem for the value afadkicient of
shielding sound field is investigated.

2. Problem formulation

Let all the space Foe spitted by plane§,(z=h,) andS,(z=h,+h,)on the
fieldsD,(z<h), D,(hy<z<h +h,), D,(z>h +h,) (fig. 1.). The area Phas
thin unclosed spherical shé&l| perfectly, located on the sphdref the radius
with the center at the point O. We denot@@”(Os r<a) the area of space

bounded by the sphefeand D, =D UI UDY’. The distance between points
O and Qs equahy, h; is the distance between plang=8d S.

The point radiator of the sound waves oscillating with anguémyuiEncyw
is located at the point O. Areas, P= 0.1, filled with a material in which shear
waves do not propagate density of the medium and a speed of sound in the
area pare denoted by ;, c;, respectively. The area[» a plane elastic layer.

The elastic layer oscillates under the influence of the sound fieltefissmation
is determined by the displacement vectorthat satisfies the Lame equation
[2, 3]:

JAU+ (A + i) grad divu+ o p U= ( (1)
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2 2 2
where A =— +— +—; is the Laplace operatod, i are Lame coefficients,
ox- oy° o0z
P is density of the medium.

i

o

Fig. 1. Geometry of the problem

To solve this problem we connected spherical coordifiatés ¢} and cy-
lindrical coordinate§p, ¢, 2 with the point O. The spherical sh&lland the
plane §j =0, 1 are described as follows:

r,={r=a 6,<8<n0<¢< 2n} (2)
S ={z=h,0<psoo, <p< &} 3)
S ={z=h+h,, 0<p<w, 0<g< 2} (4)

Let p. be the pressure of the sound field of the primary poinatadip{”
be the secondary sound pressure field in the 88a p,=p® + p? be the
secondary sound pressure field in the AD%% andp, be the secondary sound
pressure field in the area.Dr'he actual displacement and the sound pressure are
calculated by the formulas = Re(U e’"“) and P, = Re( p, e‘"“). P; is imagi-
nary unit. The pressures of secondary sound figldi(j = 0, 1, 2) andg, satis-
fies the Helmholtz equation [2, 3]:
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Ap(()j)+k§p(()j)=0 in D, Apl+k12p1:O in D, ()

where:k, =w/ c,, k =w/c, are wave numbers.

The displacement vector is determined by the formula [2]:
0P
u=grady + rof —— 6
grady ( o g} (6)

The equation (6) is satisfied in the case of propagation of small disteba
in an elastic body for steady-state motion of the particléseobody. Functions
w and® satisfy the Helmholtz equation and are defined as:

MY+ =0, k =wlc, ¢=A+21)/p 7)
AD+K2D =0, k =wlc, ¢=alIp

where: fi, ¢ are velocity of longitudinal and transverse elastic waespec-
tively.

In cylindrical coordinate system components of the displacemetanare
associated with the functiopsand® by relations:

y 2w, 00 Oy 00
»Top opaz ¢ az 07°

+kio (8)

The solution of the diffraction problem is reduced to find displacement
vector ii(u,,u,,0), the pressures of the sound fiep§” (j = 0, 1, 2)p, which

satisfy the boundary condition on the surface of the spheriefil(akoustically
hard shell):

%(p +p?)

=0 (9)

ry

boundary conditions of the interaction of the sound field with an elagtc on
a plane

, + =0 (20)
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ou, = ou
20+ =2+ | L+ L || =-p 11
The condition at infinity [2, 3, 12] can be written as:
op (M
lim r M—ik. p;(M) |=0, j=0,1 (12)
M S o ar J J

where M is an arbitrary point at the space.

Condition at continuity of pressure on the open part of the sphehedll
I'/T'y is given by:

) =(p® 2
(p° TP )‘r\r1 - ( P+ Po )‘r\r1 (13)
and the normal derivative on the surface of the spheis
4 @) =9 (0 4 @
—(p.+ =— + 14
or (pc Po )‘r ar (po Po ) i (14)

The initial pressure of the sound field can be represented in the form [12]

P.(r,6) = Pexplk,r ) /r = Pi fAY (ko )Py (co® ), f, =ikydq, (15)

n=0

where h{ (x) are spherical Hankel functionB, (cosd ) is Legendre polynomi-
nals [13], 9,, is Kronecker delta anflis constant.
The pressure of the scattered sound field is represented as a superposition of

basic solutions of the Helmholtz equation in spherical and cyteldcoordi-
nates [14], taking into account the condition at infinity (12) we have:

P, 9)—ch in (ko' )P, (cosd) in DY (16)
3 dxn P (cosd)=0, (<,

"0 (%)

df (17)

[

5 5, W (6 (comt) =~ 3T, 1, ()7 (o) <05

dfo
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00

pi(0.2) =P[d(A)35(Ap0) €™ ™AdA in D, (18)
0
w(p.2)= PT(a(A)e“"(Z‘“) +b(A) ev’(z‘hl'hZ))Jo (Ap)AdA (19)
0
®(p,7)= pojo(a(A)e‘W(Z'ﬂ) +b(A )é"(z‘hi‘hZ))Jo (Ap)AdA (20)

0

where j,(X) are spherical Bessel functions of the first kidg(x) are Bessel

functions of the first kind, vjzﬂMz—k]—Z,—nIZS argy;<m/2,j=0,1;

V, =\JA%—K?, —m/2<argy, <m/2,v, =A* -kZ, —-n/2< argy, <m/2.

Unknown coefficientsc,, x, and functions a(4), b(4), &(4), b(4),
y(A), d(A) must be determined from boundary conditions.

3. Boundary conditions

The boundary conditions are defined by egs. (1), (9) and (11). The function
p$? (p,2) through spherical wave functions, using the formula connecting cy-
lindrical and spherical wave functions is:

Jo(Ap)e“:g(—i)”(m+J)Pn(i?vjjn(kf)Pn(Coﬁ‘?) (21)

v=+A%-k?®, -n/2<argv<n/2

then

[

p$? (r, 8)=P> T, i, (kor ) P, (cosh)
n=o ) (22)
T,=(-)"(2n+ 1)j y(1)P, (%} e*"1dA
0

According to egs. (12)-(14) and eq. (17), the boundary condition (11) taking
into account the condition of orthogonality of Legendre polynomialtherin-

terval [O; x] will become:
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NG
f dfoh‘ (%) & e df
& =k@a n=0,1,..

U o d .
(Eo) X dfom (50) dfan(fo) (23)

Let's specify the boundary condition (9) on the surface of a sphehiek
and the condition of continuity (13). Let's exclude factgrsin the resulting

equations, using the eq. (23). Then dual equations in Legendre's paigomi
take the form:

S %" Th pcosg)=0, <4
:E: d n 0
n=0 jn(EO)

dTro
9 ho S
an d{o (& )P, (cosd)= z dfo in(&%)P.(co®) , Gy<b<m
(24)

Let a new coefficient be:

_y 4. _
X, =X, 9z in(&)+f., n=0,1,. (25)

and a small parameter be:
_ 4Ifo d (fo)ihrgl)(fo) (26)

O = o1 dfo &,

Then we will make replacemerft=n -8, 6, =n—90, X, =(-1)"X,, for the
transformation of dual egs. (19). As a result, dual egs. (24) takerthe f

i(2n+1)(1—gn))2nPn(cos§)=i €1 @+ DF +T, I?n( coé) , 80<8,
n=0 n=0
S %P (cosd) = 0, §<d=n
n=0
(27)
where
T, =4i&T,—.(&) /(@n+1), f, =45§fni (&) I(m+ 1  (28)

50 dé,
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Dual egs. (25) are converted to an infinite system of link@beaic equa-
tions of the second kind with the completely continuous operaitog tise inte-
gral representation for the Legendre polynomials [15, 16]:

X, _:ZOQKR*XK =§(—1)k (T + )R, n=0,1,.. (29)
where
-1 sin(n—k)(n—é?o)_sin(n+k+])(n—HO)}
sinf-K) =) . e (30)
n-k - °

To satisfy boundary conditions (11), the functipf (r,6) through cylin-
drical wave functions takes the form:

00 -_n_l .

@ - v svz

h® (kr) P, (cost) { - IDn(ijo(/}p)e AdA -

v=yA?-k? -mn/2<argv<n/2, z>0

then
oY (0.2)=P[Z(1)3,(A0)e™* AdA, Z(/i):iii‘”‘lpn(iﬁ])(n
0 Vo n=0 Ko

(32)

Taking into account the eqgs. (17)-(20) and (32) and boundary conditions
(11), the linear algebraic equation takes the form:

M (4) W (4) =F (1) Z(4) (33)
where
my(A) my(A) mA) myfA) 1 0
My (A) My(A) myfA) myfA) 0 0
M (A) = Myy(A) Mgy(A) mMgA) myfA) myfA) 0
My (A) My(A) mu{A) myfA) 0 1 '
mg;(A)  mMgy(A) mg{A) mgfA 0 0
Mgy () Mgx(A) MeA) mMefA) 0 M edA)
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a(A) fi(A)
b(4) 0
V(A)= E‘Ejg . Fy=| B (34)
y(A) 0
d(A) 0
my(4) = (2 + A)? =A%, my,(A)=[(22+ )~ AA?] e
mys (A :(2,[1+/T)(—v3—vtk12)+/1)lz\/t
my, (4 =[(2,[1+/T)(vt3+vtk12)—/]/12vt}e"'h2

)

(4)

(1)

(4)

(1)

My (A) ==V, my(A)=v,e™™, mgy(A)=v +k?
my, (1) = +k2 e, my(A)=-w sV,
m,, ()= (2a+ 2V ~AA%[e*™ , my,(A)=( 22+ )V - A2? (35)
( ):Q(Z[H/T)(—vf—vtk12)+/T/12vt]e"V'h2

(1) (

(4)

(1)

(1)

(1)

(1)

=-2v,e"™, mg,(1)= 2,

- [thz + ktz]e_m C g (A) =27 + k¢

, Mgy(A)=v,

ek fet ) m ()i

=w?ptv, f(A)=-e"", fi0)=-w?ptv,en"

Solving the system (36), we find the function:
y(A)=[Ms ()| Z(2)/ M (A), (36)

where|M (4)| is the determinant of the matrM (4), [M;(1)| is the determi-
nant of the matrixM 4 (1), Ms(A) is the matrixM (A) in which the fifth col-
umn is replaced by the vectér(4).

Relation between coefficieni.’%< and )Zpbased on the egs. (2225), (28),
(32) and (36) take:

T, =Zspk>2p+ f., k=0,1,2 .. (37)
p=0
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where
— 283 (_1Kik+p_d (A)|
Spk 4y (1) df J &o)—7 E Jk o )J‘ 0| M |
9 1V Vo | _—vh,
P, [_ko ka [_ko je AdA (38)
_ w1 d | /|)| Vo ) rn
f, =4&i(-i) 3 k<fo)j O|M ) |Pk( AdA (39)

After excluding coefficients'I:k from the right-hand side of the eq. (29) with
the help of eq. (37), then we have:

X _i(gk&k_ank)xk=Z._o:(fk+(_1)k f:k)Rﬂu n=0,12,. (40)
@y =Y (1) RySo (41)
p=0

Let's find connection between the functidf4), entering into representa-

tion of pressurepl(p, z) in areaD,, and coefficientsX , — solutions of system
(40). From eq. (33) it follows that:

d(A)=|Mg(A)|Z(A)/|M ()| (42)

where|Mg (2)| is the determinant of the matrd, (1), Mg (4) is the matrix
M (A), in which the sixth column is replaced by the vedt).

According to egs. (25) and (32), we have:
[Mq ()

. e d
e |kov0§pp(koJ(( 1)pxpdfojp(fo)+fp] @3

The coefficient of screening of the sound field in af®ais calculated
based on the following formula:

d(1)=

K(0.2)=|p(0.2)/|p|, z>h+h, (44)
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4. Computational experiment

Using computer algebra system MathCAD [17, 18], calculatiériBeoco-
efficient of screening of the sound field were carried auareaD, for some
parameters of the problem. Spherical functions were caldulbye means
of built-in functions. Derivatives of spherical functions wemdcualated by
means of the formula [13]:

g4 f,(x)=nf (X)/x-f.,(x), n=0,1, 2, ... (45)
dx

Values of v, =J)I2—kj2, j=0,1,v, =A% -k?,v, =4JA*-k? were cal-

culated according to the formulae:

JA K2, Azk
Vv, = L 46
{—iw/krz—)l, 0<A<k (46)

The infinite system (36) was solved by the method of truncation Cofh-
putational experiment showed that the truncation order for thédeved pa-
rameters of a task can be eq. (25). It provides the dea$ieq. (36) with an
accuracy 10. Lame coefficients are associated with the Young's moduiarsi
Poisson's ratio by the relation:

A=VvE/(@+v)A-2)), A=E [(2+ ¥ ) (47)

Computational experiment showed that the truncation order of thd2q.
can be eq. (17) for the considered parameters of the problespibvides the
ultimate solution of the eq. (42) with accuracy and the condiiiomber that
will not exceed 35. Figure 2. shows plots of shielding coefficke(@,z) of the
sound fieldz>h +h,, for some values of the anglg The area Bis filled by
the air po = 1.29 kg/m, ¢, = 343 m/s). The area,Ds filled by the water
(p,=1000kg/m?®, ¢, = 1500 m/s). The area ,Dis filled by the rubber
(p= 910 kg/m, E = 7.9 MPa,v = 0.46). The remain parameters are equal:
hi =4 m;h,=0.02 mia=0.2 mf=50Hz,w = 2af.

Figure 3. shows plots of shielding coefficidftO, 2) of the sound field,
z>h +h,, for some values of the frequency of the sound field. The agea D
is filled by the air fo = 1.29 kg/m, ¢, = 343 m/s). The area,Ds filled by the
nitrogen p; = 830 kg/m, ¢; = 962 m/s). The area;Ds filled by the aluminum

(p = 2600 kg/m, E = 65 GPay = 0.32). Remain parameters are eqbat 4 m;
h, = 0.02 m;a= 0.3 m,§, =n/2.
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Fig. 2. Value of shielding coefficieri€(0, 2) of the sound field for
some values of the anglg
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Fig. 3. Value of shielding coefficier€(0, 2) of the sound field for
some values of the frequentygf the sound field

5. Conclusions

The solution of the problem of the penetration of the sound fietligh
a flat elastic layer is reduced to solve dual equations genhdre's polynomials
using the addition theorem for cylindrical and spherical wavetifume The
developed methodology and software can be of practical use in théatiare
of sound screens. Following tasks were carried out:
1. Dual equations are converted to the infinite system oaidiaégebraic
equations of the second kind with the completely continuous operator.
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2. The spherical radiator is considered as the source of tinel $ield lo-
cated within the thin open spherical shell.

3. The influence of geometrical parameters of the problemdehsity of
the environments, Young's modulus, Poisson's ratio and the speed of
sound on the value of the shielding coefficient of the sound fieteé we
computed.
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PRZENIKANIE POLA AKUSTYCZNEGO PROMIENNIKA
KULISTEGO PRZEZ PLASK A WARSTWE SPREZYSTA

Streszczenie

W artykule przedstawiono wyniki doktadnych obli6zesiowosymetrycznego problemu
przenikania pola akustycznego przez pdaslarstwe sprzysts. Kulisty promiennik jest umiesz-
czony w cienkiej otwartej powtoce ettacej zrodtem pola akustycznego. Wykorzysimjodpo-
wiednie twierdzenia, rozwranie problemu warunkéw brzegowych ograniczono awigzania
podwadjnych funkcji w wielomianach Legendre’a, kt@etransponowane do skezonych linio-
wych réwna algebraicznych drugiego ¢du z calkowicie eiglym operatorem. Badano wplyw
niektérych parametréw problemu na wattavspétczynnika ekranowania pola akustycznego.
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