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THE PENETRATION OF THE SOUND FIELD  
OF THE SPHERICAL RADIATOR THROUGH  
THE PLANE ELASTIC LAYER 

In this paper the results of exact solution of the axisymmetric problem of the pene-
tration of the sound field through the plane elastic layer are presented. The spheri-
cal radiator is located in a thin unclosed spherical shell as the source of the acous-
tic field. Using appropriate theorems, the solution of the boundary conditions prob-
lem is reduced to solve dual functions in Legendre's polynomials, which are con-
verted to the infinite system of linear algebraic equations of the second kind with  
a completely continuous operator. The influence of some parameters of the prob-
lem on the value of the coefficient of shielding sound field is investigated. 
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1. Introduction 

The research of the distribution of the sound waves in elastic environment 
has a great importance in  medical diagnostics, in the underwater acoustics and 
in the seismology, etc. [1-3]. Sandler and Maev [4] considered the problem of 
calculating the propagation of acoustic waves within an ideal isotropic multi-
layer plate structure. Exploring this problem by examining the ray paths of the 
multiple reflections within the plate structure, it is possible to show that upon 
careful consideration many of these paths will travel equivalent distances in time 
and space becoming coincident. The solution of a problem of dispersion of a 
spherical sound wave on a multilayered uniform firm plate can be consolidated 
to system of the algebraic equations [5]. Results of research of distribution of 
sound waves in poorly connected acoustic layers with rigid borders are presented 
by Gortinskaja and Popov [6]. For the solution of the Helmholtz equation with 
Neumann’s boundary conditions the method of coordination of asymptotic de-
composition of solutions of regional problems is used.  
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Yan and Zhao [7] considered the inverse problem of the scattering of  
a plane acoustic wave by a multilayered scatterer. The inverse scattering prob-
lem is analysed as the problem of determining the shape of a multilayered scat-
terer by measurements of the far field patterns of acoustic or electromagnetic 
scattered waves. Transfer matrix technique is used by Vashishth and Gupta [8] 
to study the layered materials. The effects of frequency, porosity, angle of inci-
dence, layer thickness and number of layers on the energy ratios and surface 
impedance are studied for different configurations of the layered materials. In 
recent study Kiselyova and Shushkevich [9] considered the solution of a prob-
lem on penetration of a sound field through of system permeable planes. As  
a source of a field the spherical radiator located in a thin not closed spherical 
cover is considered. The layers of the plate are made up of ideal acoustic materi-
als (linear, homogeneous, isotropic, non dispersive) with known material param-
eters, and the plates are assumed to be bonded such that the interfaces follow the 
perfectly bonded boundary conditions [10, 11]. 

The aim of the paper is construct the exact solution of the axisymmetric 
problem of the penetration of the sound field through the flat elastic layer. The 
influence of some parameters of the problem for the value of the coefficient of 
shielding sound field is investigated. 

2. Problem formulation 

Let all the space R3 be spitted by planes ( )0 1S z h=  and ( )1 1 2S z h h= + on the 

fields 0 1D ( ),z h<  2 1 1 2D ( ),h z h h< < +  1 1 2D ( )z h h> +  (fig. 1.). The area D0 has 
thin unclosed spherical shell Г1 perfectly, located on the sphere Г of the radius a 

with the center at the point O. We denoted (0)
0D (0 )r a≤ <  the area of space 

bounded by the sphere Г and (0) (1)
0 0 0D D D= ΓU U . The distance between points 

O and O1 is equal h1, h2 is the distance between planes S0 and S1. 
The point radiator of the sound waves oscillating with angular frequency ω 

is located at the point O. Areas Dj, j = 0.1, filled with a material in which shear 
waves do not propagate A density of the medium and a speed of sound in the 
area Dj are denoted by jρ% , jc , respectively. The area D2 is a plane elastic layer. 

The elastic layer oscillates under the influence of the sound field. Its deformation 
is determined by the displacement vector u

r
 that satisfies the Lame equation  

[2, 3]: 

2u ( )graddivu u 0µ λ µ ω ρ∆ + + + =r r r% %% %    (1) 
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where 
2 2 2

2 2 2x y z

∂ ∂ ∂∆ = + +
∂ ∂ ∂

 is the Laplace operator, ,λ µ% %  are Lame coefficients, 

ρ%  is density of the medium. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Geometry of the problem 

 
To solve this problem we connected spherical coordinates{ ,  ,  }r θ ϕ  and cy-

lindrical coordinates { , , }zρ ϕ  with the point O. The spherical shell Г1 and the 
plane Sj, j = 0, 1 are described as follows: 

{ }1 0, π, 0 2πr a θ θ ϕΓ = = ≤ ≤ ≤ ≤       (2) 

{ }0 1S , 0 , 0 2πz h ρ ϕ= = ≤ ≤ ∞ ≤ ≤      (3) 

{ }1 1 2S , 0 , 0 2πz h h ρ ϕ= = + ≤ ≤ ∞ ≤ ≤     (4) 

Let pc be the pressure of the sound field of the primary point radiator, (0)
0p  

be the secondary sound pressure field in the area (0)
0D ,  (1) (2)

0 0 0p p p= +  be the 

secondary sound pressure field in the area (1)
0D  and p1 be the secondary sound 

pressure field in the area D1. The actual displacement and the sound pressure are 

calculated by the formulas ( )Re e i tU u ω−=
r r

 and ( )Re e i t
j jP p ω−= . Pj is imagi-

nary unit. The pressures of secondary sound field ( )
0

jp (j = 0, 1, 2) and p1 satis-
fies the Helmholtz equation [2, 3]: 
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( ) 2 ( )
0 0 0 0j jp k p∆ + =    in   0D ,    2

1 1 1 0p k p∆ + =    in   1D   (5) 

where: 0 0/ ,k cω=  1 1/k cω=  are wave numbers.  

The displacement vector is determined by the formula [2]: 

u grad rot eϕψ
ρ

 ∂Φ= + − ∂ 

rr
      (6) 

The equation (6) is satisfied in the case of propagation of small disturbances 
in an elastic body for steady-state motion of the particles of the body. Functions 
ψ and Ф satisfy the Helmholtz equation and are defined as:  

2

2

0, / , ( 2 ) /

0, / , /

l l l l

t t t t

k k с с

k k c c

ψ ψ ω λ µ ρ

ω µ ρ

∆ + = = = + 


∆Φ + Φ = = = 

% %%

%%
 (7) 

where: ,l tn c%  are velocity of longitudinal and transverse elastic waves respec-
tively. 

In cylindrical coordinate system components of the displacement vector are 
associated with the functions ψ and Ф by relations: 

2 2
2

2
, z tu u k

z z z
ρ

ψ ψ
ρ ρ

∂ ∂ Φ ∂ ∂ Φ= + = + + Φ
∂ ∂ ∂ ∂ ∂

      (8) 

The solution of the diffraction problem is reduced to find the displacement 

vector ( , ,0),zu u uρ
r

 the pressures of the sound field ( )
0

jp (j = 0, 1, 2) 1p  which 

satisfy the boundary condition on the surface of the spherical shell (acoustically 
hard shell): 

( )
1

(0)
0 0cp p

r Γ

∂ + =
∂

   (9) 

boundary conditions of the interaction of the sound field with an elastic layer on 
a plane Sj: 

2 1
S

S

,
j

j

j
z j

p
u

z
ω ρ− − ∂

=
∂

%    
S

0
j

z
u u

z
ρ

ρ
∂ ∂+ =
∂ ∂

       (10) 
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( )
S

S

2
j

j

z
j

u uu
p

z
ρ ρµ λ λ

ρ ρ
∂ ∂+ + + = − ∂ ∂ 

% %%      (11) 

The condition at infinity [2, 3, 12] can be written as: 

(M)
lim (M) 0,j

j j
M

p
r ik p

r→∞

∂ 
− = ∂ 

    0,  1j =    (12) 

where M is an arbitrary point at the space.     

Condition at continuity of pressure on the open part of the spherical shell 
Г/Г1 is given by:   

( ) ( )
1 1

(0) (1) (2)
0 0 0

\ \
cp p p p

Γ Γ Γ Γ
+ = +        (13) 

and the normal derivative on the surface of the sphere Γ  is: 

( ) ( )(0) (1) (2)
0 0 0cp p p p

r rΓ Γ

∂ ∂+ = +
∂ ∂

  (14) 

The initial pressure of the sound field can be represented in the form [12]: 

( )(1)
0 0 0 0

0

( , ) exp( ) / (cos ),c n n n n n
n

p r P ik r r P f h k r P f ikθ θ δ
∞

=
= = =∑    (15) 

where ( )(1)
nh x  are spherical Hankel functions, (cos )nP θ  is Legendre polynomi-

nals [13], 0nδ  is Kronecker delta and P is constant.  

The pressure of the scattered sound field is represented as a superposition of 
basic solutions of the Helmholtz equation in spherical and cylindrical coordi-
nates [14], taking into account the condition at infinity (12) we have: 

( ) ( )(0)
0 0

0

( , ) cosn n n
n

p r P c j k r Pθ θ
∞

=
= ∑    in   (0)

0D    (16) 

( )

( ) ( ) ( ) ( )

0
0

0
0

(1)
0 0 0

0 00 0

(cos ) 0, 0
d

d
d d

cos cos , π
d d

n n
n

n
n

n n n n n n
n n

x f
P

j

x h P T j P

θ θ θ
ξ

ξ

ξ θ ξ θ θ θ
ξ ξ

∞

=

∞ ∞

= =

−
= ≤ < 





=− < ≤ 


∑

∑ ∑

 (17) 
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( ) ( ) ( ) ( )1 1 2

1 0
0

, e v z h hp z P d J dρ λ λρ λ λ
∞

− − −= ∫    in   1D  (18) 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 2

0
0

, e ev z h v z h hz P a b J dψ ρ λ λ λρ λ λ
∞

− − − −= +∫ l l   (19) 

( ) ( ) ( )( ) ( )1 1 2

0
0

, ( )e ( )et tv z h v z h hz P a b J dρ λ λ λρ λ λ
∞

− − − −Φ = +∫ %%    (20) 

where ( )nj x  are spherical Bessel functions of the first kind, ( )0J x  are Bessel 

functions of the first kind, 2 2 ,j jv kλ= − π / 2 arg π / 2jv− ≤ < , 0, 1j = ;

2 2 ,v kλ= −l l π / 2 arg π / 2,v− ≤ <l

2 2 ,t tv kλ= −  π / 2 arg π / 2.tv− ≤ <  

Unknown coefficients ,n nc x  and functions ( ),a λ ( ) ( ) ( ), , ,b a bλ λ λ%%  

( ) ( ),y dλ λ  must be determined from boundary conditions. 

3. Boundary conditions 

The boundary conditions are defined by eqs. (1), (9) and (11). The function 

( )(2)
0 ,p zρ  through spherical wave functions, using the formula connecting cy-

lindrical and spherical wave functions is: 

( ) ( ) ( ) ( )0
0

2 2

e ( ) 2 1 cos

, π / 2 arg π / 2

v z n
n n n

n

i v
J i n P j kr P

k

v k v

λρ θ

λ

∞

=

 = − +  
  

= − − ≤ < 

∑      (21) 

then 

( ) ( ) ( )

( ) ( ) 0

(2)
0 0

0

00

, cos

( ) 2 1 e

n n n
n o

v hn
n n

p r P T j k r P

iv
T i n y P d

k

θ θ

λ λ λ

∞

=
∞

−


= 


 
= − +  
  

∑

∫
  (22)  

According to eqs. (12)-(14) and eq. (17), the boundary condition (11) taking 
into account the condition of orthogonality of Legendre polynomials on the in-
terval [ ]0; π  will become: 
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( ) ( ) ( ) ( )(1) (1)
0 0 0 0

0 0 00

0 0

d d d d

d d dd
, 0, 1, ...

n n n n n n n nf h c j x h T j

k a n

ξ ξ ξ ξ
ξ ξ ξξ

ξ

+ = + 

= = 

 (23) 

Let's specify the boundary condition (9) on the surface of a spherical shell 
and the condition of continuity (13). Let's exclude factors nc  in the resulting 
equations, using the eq. (23). Then dual equations in Legendre's polynomials 
take the form: 

( )

( ) ( ) ( ) ( )

0
0

0
0

(1)
0 0 0

0 00 0

(cos ) 0, 0
d

d
d d

cos cos , π
d d

n n
n

n
n

n n n n n n
n n

x f
P

j

x h P T j P

θ θ θ
ξ

ξ

ξ θ ξ θ θ θ
ξ ξ

∞

=

∞ ∞

= =

− = ≤ < 




= − < ≤ 


∑

∑ ∑

  

 (24)  

Let a new coefficient be: 

( )0
0

d
,

dn n n nx X j fξ
ξ

= +      0, 1,...n =  (25)  

and a small parameter be: 

( ) ( )
3

(1)0
0 0

0 0

4 d d
1

2 1 d dn n n

i
g j h

n

ξ ξ ξ
ξ ξ

= +
+

  (26) 

Then we will make replacement π ,θ θ= − %  0 0π ,θ θ= − %  ( 1)n
n nX X= −%  for the 

transformation of dual eqs. (19). As a result, dual eqs. (24) take the form: 

( )( ) ( ) ( )

( )

0
0 0

0
0

2 1 1 cos ( 1) (2 1)( ) cos , 0

cos 0, π

n
n n n n n n

n n

n n
n

n g X P n f T P

X P

θ θ θ θ

θ θ θ

∞ ∞

= =
∞

=


+ − = − + + ≤ < 



= < ≤


∑ ∑

∑

%% % % %% %

% % %%

 

   (27) 

where 

( ) ( )3 3 (1)
0 0 0 0

0 0

d d
4 / (2 1), 4 / (2 1)

d dn n n n n nT i T j n f i f h nξ ξ ξ ξ
ξ ξ

= + = +%%    (28) 
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Dual eqs. (25) are converted to an infinite system of linear algebraic equa-
tions of the second kind with the completely continuous operator using the inte-
gral representation for the Legendre polynomials [15, 16]: 

( )
0 0

( 1) , 0, 1,...k
n k nk k k k nk

k k

X g R X T f R n
∞ ∞

= =
− = − + =∑ ∑ %% % %   (29) 

where 

( ) ( )

( )

0 0

0
0

sin (π ) sin 1 (π )1

π 1
sin (π )

π

nk

n k

n k n k
R

n k n k
n k

n k

θ θ

θ
θ

=

 − − + + − 
= −  − + +  

− − = −
− 

    (30) 

To satisfy boundary conditions (11), the function ( ) ( )1
0 ,p r θ  through cylin-

drical wave functions takes the form: 

( ) ( ) ( )
1

(1)
0

0
2 2

cos e

, π / 2 arg π / 2, 0

n
vz

n n n

i i v
h kr P P J d

kv k

v k v z

θ λρ λ λ

λ

∞ − −
−  =  

 
= − − ≤ < > 

∫     (31) 

then  

( ) ( ) ( ) ( ) ( )01 1 0
0 0

00 0 00

1
, e ,v z n

n n
n

iv
p z P Z J d Z i P x

k v k
ρ λ λρ λ λ λ

∞ ∞
− − −

=

 
= =  

 
∑∫  

  (32) 

Taking into account the eqs. (17)-(20) and (32) and boundary conditions 
(11), the linear algebraic equation takes the form: 

( ) ( ) ( ) ( )M V F Zλ λ λ λ⋅ = ⋅    (33) 

where 

11 12 13 14

21 22 23 24

31 32 33 34 35

41 42 43 44

51 52 53 54

61 62 63 64 66

( ) ( ) ( ) ( ) 1 0
( ) ( ) ( ) ( ) 0 0
( ) ( ) ( ) ( ) ( ) 0( ) ( ) ( ) ( ) ( ) 0 1
( ) ( ) ( ) ( ) 0 0
( ) ( ) ( ) ( ) 0 ( )

m m m m
m m m m
m m m m mM m m m m
m m m m
m m m m m

λ λ λ λ
λ λ λ λ
λ λ λ λ λλ λ λ λ λ
λ λ λ λ
λ λ λ λ λ

 
 
 =  
 
 
 

,   
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( )

1

3

( ) ( )
( ) 0
( ) ( ), ( ) 0( )

0( )
0( )

a f
b
a fV F
b
y
d

λ λ
λ
λ λλ λλ
λ
λ

   
   
   = =   
   

  
  

%
%     (34) 

( ) ( ) ( ) ( )
( ) ( )( )
( ) ( )( )
( ) ( )
( ) ( )
( ) ( )

2

2

2

2

2

2 2 2 2
11 12

3 2 2
13

3 2 2
14

21 22
2 2 2 2

23 24

31 32 3

2 , 2 e

2

2 e

2 , 2 e
2 , 2 e

, e ,

t

t

v h

t t t t

v h
t t t t

v h

v h
t t t t

v h

m v m v

m v v k v

m v v k v

m v m v
m v k m v k

m v m v m

λ µ λ λλ λ µ λ λλ
λ µ λ λλ
λ µ λ λλ
λ λ
λ λ
λ λ

−

−

−

−

−

 = + − = + − 
= + − − +
 = + + −
 

= − =
 = + = + 

= − =

l

l

l

l l

l l

l l

% % % %% %

% %%

% %%

( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( )( )
( ) ( )( )
( ) ( )
( )

2

2

2

2

2 2
3

2 2 2 1
34 35 0 0

2 2 2 2
41 42

3 2 2
43

3 2 2
44

51 52
2 2

53

e ,

2 e , 2

2 e

2

2 e , 2
2

t

t

t t
v h

t t

v h

v h
t t t t

t t t t
v h

t t

v k

m v k m v

m v m v

m v v k v

m v v k v

m v m v
m v k

λ
λ λ ω ρ

λ µ λ λλ λ µ λ λλ

λ µ λ λλ
λ µ λ λλ
λ λ
λ

− − −

−

−

−

= +
 = + = − 
 = + − = + − 
 = + − − + 

= + + −
= − =
= +

l

l

l l

l l

%

% % % %% %

% %%

% %%

( )
( ) ( )
( ) ( )
( )

2

2

2

0 1 0 1

2 2
54

61 62
2 2 2 2

63 64
2 1 2 1

66 1 1 1 3 1 1

e , 2

e ,
e ,

, ( ) e , ( ) e

t

t

v h
t t

v h

v h
t t t t

v h v h

m v k

m v m v
m v k m v k

m v f f v

λ
λ λ
λ λ
λ ω ρ λ λ ω ρ

−

−

−

− −− − − −



















  = +  

= − = 
 = + = +  

= = − = − 


l

l l

% %

   

Solving the system (36), we find the function: 

( ) ( ) ( ) ( )5 /y M Z Mλ λ λ λ=        (36) 

where ( )M λ  is the determinant of the matrix ( ),M λ  ( )5M λ  is the determi-

nant of the matrix ( )5 ,M λ  ( )5M λ  is the matrix ( )M λ  in which the fifth col-

umn is replaced by the vector ( ).F λ  

Relation between coefficients kT%  and pX% based on the eqs. (22), (25), (28), 

(32) and (36) take: 

0

, 0, 1, 2 ...k pk p k
p

T S X f k
∞

=
= + =∑ %%% %       (37) 

(35) 
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where  

( )
( )

53
0 0 0

0 0 0 00

d d
4 ( 1) ( ) ( )

d d
k k p

pk p k

M
S i j j

k v M

λ
ξ ξ ξ

ξ ξ λ

∞
+= − ×∫  

0 10 0

0 0

e v h
p k

iv iv
P P d

k k
λ λ−   

×    
   

    (38) 

( ) ( )
( )

0 1
1 53 0

0 0
0 000

d
4 ( ) e

d
k v h

k k k

M iv
f i i j P d

kv M

λ
ξ ξ λ λ

ξ λ

∞
+ − 

= −  
 

∫
%%   (39) 

After excluding coefficients kT%  from the right-hand side of the eq. (29) with 
the help of eq. (37), then we have:  

( )( )
0 0

( ) 1 , 0, 1, 2,...
k

n k nk nk k k k nk
k k

X g R X f f R nα
∞ ∞

= =
− − = + − =∑ ∑ %% %% %      (40)  

( )
0

1
p

nk np kp
p

R Sα
∞

=
= −∑    (41) 

Let's find connection between the function ( ),d λ  entering into representa-

tion of pressure ( )1 ,p zρ  in area 1D ,  and coefficients nX%  – solutions of system 

(40). From eq. (33) it follows that: 

( ) ( ) ( ) ( )6 /d M Z Mλ λ λ λ=      (42) 

where ( )6M λ  is the determinant of the matrix ( )6 ,M λ  ( )6M λ  is the matrix 

( ),M λ  in which the sixth column is replaced by the vector ( ).F λ  

According to eqs. (25) and (32), we have: 

( ) ( )
( ) ( ) ( )6 1 0

0
0 0 00 0

d
1

d
pp

p p p p
p

M iv
d i P X j f

kM k v

λ
λ ξ

ξλ

∞
− −

=

  
= − +  

  
∑ %   (43) 

The coefficient of screening of the sound  field in area 1D  is calculated 
based on the following formula: 

1 1 2( , ) ( , ) / ,cK z p z p z h hρ ρ= > +  (44) 
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4. Computational experiment 

Using computer algebra system MathCAD [17, 18], calculations of the co-
efficient of screening of the sound field were carried out in area 1D  for some 
parameters of the problem. Spherical functions were calculated by means 
of built-in functions. Derivatives of spherical functions were calculated by 
means of the formula [13]: 

1

d
( ) ( ) / ( ), 0, 1, 2, ...

d n n nf x nf x x f x n
x += − =    (45) 

Values of 2 2 2 2 2 2, 0, 1, ,j j t tv k j v k v kλ λ λ= − = = − = −l l  were cal-

culated according to the formulae: 

2 2

2

,

, 0

k k
v

i k k
τ τ

τ
τ τ

λ λ
λ λ

 − ≥=
− − ≤ <

    (46) 

The infinite system (36) was solved by the method of truncation [17]. Com-
putational experiment showed that the truncation order for the considered pa-
rameters of a task can be eq. (25). It provides the decision of eq. (36) with an 
accuracy 10–4. Lame coefficients are associated with the Young's modulus E and 
Poisson's ratio by the relation: 

/ ((1 )(1 2 )), / (2 2 )E Eλ ν ν ν µ ν= + − = +% %      (47) 

Computational experiment showed that the truncation order of the eq. (42) 
can be eq. (17) for the considered parameters of the problem. This provides the 
ultimate solution of the eq. (42) with accuracy and the condition number that 
will not exceed 35. Figure 2. shows plots of shielding coefficient (0, )K z  of the 

sound field 1 2,z h h> +  for some values of the angle θ0. The area D0 is filled by 
the air (ρ0 = 1.29 kg/m3, c0 = 343 m/s). The area D1 is filled by the water 
( 1 1000ρ =% kg/m3, c1 = 1500 m/s). The area D1 is filled by the rubber  
( ρ% = 910 kg/m3, E = 7.9 MPa, ν = 0.46). The remain parameters are equal:  
h1 = 4 m; h2 = 0.02 m; a = 0.2 m, f = 50 Hz; ω = 2πf.  

Figure 3. shows plots of shielding coefficient K(0, z) of the sound field, 

1 2,z h h> +  for some values of the frequency of the sound field. The area D0  
is filled by the air (ρ0 = 1.29 kg/m3, c0 = 343 m/s). The area D1 is filled by the 
nitrogen (ρ1 = 830 kg/m3, c1 = 962 m/s). The area D1 is filled by the aluminum 
(ρ = 2600 kg/m3, E = 65 GPa, ν = 0.32). Remain parameters are equal: h1 = 4 m; 
h2 = 0.02 m; a = 0.3 m, θ0 = π/2. 
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Fig. 2. Value of shielding coefficient K(0, z) of the sound field for 
some values of the angle θ0  

 

 
Fig. 3. Value of shielding coefficient K(0, z) of the sound field for 
some values of the frequency f of the sound field  

 

5. Conclusions 

The solution of the problem of the penetration of the sound field through  
a flat elastic layer is reduced to solve dual equations in Legendre's polynomials 
using the addition theorem for cylindrical and spherical wave functions. The 
developed methodology and software can be of practical use in the manufacture 
of sound screens. Following tasks were carried out:  

1. Dual equations are converted to the infinite system of linear algebraic 
equations of the second kind with the completely continuous operator.  
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2. The spherical radiator is considered as the source of the sound field lo-
cated within the thin open spherical shell.  

3. The influence of geometrical parameters of the problem, the density of 
the environments, Young's modulus, Poisson's ratio and the speed of 
sound on the value of the shielding coefficient of the sound field were 
computed.  
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PRZENIKANIE POLA AKUSTYCZNEGO PROMIENNIKA  
KULISTEGO PRZEZ PŁASK Ą WARSTWĘ SPRĘśYSTĄ 

S t r e s z c z e n i e  

W artykule przedstawiono wyniki dokładnych obliczeń osiowosymetrycznego problemu 
przenikania pola akustycznego przez płaską warstwę spręŜystą. Kulisty promiennik jest umiesz-
czony w cienkiej otwartej powłoce, będącej źródłem pola akustycznego. Wykorzystując odpo-
wiednie twierdzenia, rozwiązanie problemu warunków brzegowych ograniczono do rozwiązania 
podwójnych funkcji w wielomianach Legendre’a, które są transponowane do skończonych linio-
wych równań algebraicznych drugiego rzędu z całkowicie ciągłym operatorem. Badano wpływ 
niektórych parametrów problemu na wartość współczynnika ekranowania pola akustycznego. 
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