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1. Introduction

Most papers of differential and integral equations with deviating arguments introduce
the deviation of the arguments only on the time itself, however, the case of the
deviating arguments depend on both the state variable x and the time ¢ is important
in theory and practice. These kinds of equations play an important role in nonlinear
analysis and have many applications (see [1], [7]-[11] and [13]- [16]).

Buica [8] studied the existence, uniqueness and continuous dependence of the solution
of the integral equation

£(t) = o + / F(s,x(x(s)))ds

corresponding to the initial value problem

d
ax(t) = f(t,z(z(t))), te€(a,b], z(a)=uxo
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where f € C([a,b] X [a,b]) and Lipschitz continuous in the second argument.
Here we relax the assumptions and generalize the results of [8] for the self-reference
quadratic integral equation

#1(t) ¢2(t)
z(t) = a(t) —1—/0 f1 (s,x(x(s)))ds/o fo (s,x(x(s)))ds, te0,7]. (1)

Quadratic integral equations have been studied by some authors, see for examples
[2]-[6] and [9] and references therein.

Let C[0,T] be the Banach space consisting of all functions which are defined and
continuous on the interval [0,7]. Our aim in this paper is to study the existence of
continuous positive monotonic solutions = € C[0,T] of the self-reference quadratic
integral equation (1). The uniqueness of the solution will be studied also. Moreover
we prove that the unique solution of (1) depends continuously on the the functions
a, f1 and fo.

2. Existence of solution

Consider the quadratic integral equation (1) under the following assumptions:
(i) a:[0,T] — R™ and there exists a positive constant a such that

|a(t2) — a(t1)| < a‘tg — t1|, t1,t2 € [O,T]

(it) fi:]0,T]x[0,T] — R* satisfies Carathéodory condition, i.e. f; are measurable
in ¢ for all z € C[0,T] and continuous in x for almost all ¢ € [0,7T], i=1,2.

(791) There exist two constants by, b2 > 0 and two bounded measurable functions
m; : [0,T] = R, |m;(t)] < ¢; such that

[fit; )| < [ma(t)] + bilz], i =1,2.
(iv) ¢; :[0,T] — [0,T] such that ¢;(0) =0 and

[6:(t) — ¢i(s)| < [t —s|, i=1, 2.

This assumption implies that ¢;(t) <t, i =1, 2 and 2(0) = a(0).
(v) LT 4+ |a(0)| < T and L = a + 2M; M>T < 1 where
My =c1+0T, My =co+ boT.
Define the set Sy, by
Sy ={xeC0,T]: |z(t) — x(s)| < L|t — s|} € C[0,T].

It clear that Sy, is nonempty, closed, bounded and convex subset of C[0,T].

Now we can prove the following existence theorem
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Theorem 1. Let the assumptions (i) — (v) be satisfied, then the self-reference
quadratic integral equation (1) has at least one positive solution x € S, C C[0,T].

Proof. Define the operator F associated with equation (1) by

¢1(t) ¢2(t)
Fmo:dw+A ﬁ@w@@»@A fols, z(x(s)))ds, t € [0,T).

Let x € S;, € C[0,T], t € [0,T]. Then, from our assumptions we have

1(t) ¢a(t)
Fa(t)] = ww+£ MammmwA fals, 2(x(s))ds]

1(t) ¢2(t)
SM@HA Ih@M$MWA [Fa(s, 2(x(s))) ds

¢1(t) ¢a(t)
< wm+A HW@W%M@®M®A {ma(s)] + bala(a(s)) s

1 (t)
< mm+m@m+mA {L]a(s)] + |#(0) }ds]
¢Pa(t)
@@@+@A {Lla(s)] + |#(0) }ds]

< a(t)] + [ClT + 0. (LT + |a(0)|)¢1(t)] [C2T + b (LT + \a(0)|)¢2(t)]
< la@®)] + [er + 01T [e2 + b T] T2
< Ja(®)| + M MoT? < a T+ |a(0)| + M Mo T?
< LT+1a(0)] <T.

This proves that the class {Fz} is uniformly bounded.

Now let z € Sy, and t1, tg € [O,T] such that t; < ¢t and |t2 — tl‘ < (5, then

‘F.’L‘(tz) — F$(t1)|

b1 (t2) b2 (ta2)
MM+A ﬁ@mmmwé fols, (x(s)))ds

¢1(t1) P2 (t1)
Afwmfé ﬁ@mmm@A fols, 2(z(s)))ds

= Ja(t2) —a(t1)

$1(t2) ¢2(t2)

+ /0 fl(S,x(x(s)))ds/O fa(s,z(2(s)))ds
#1(t2) $2(t1)

_ / fl(s,x(x(s)))ds/ fa(s,z(x(s)))ds
0 O
$1(t2) ¢2(t1)

+ /0 fl(S,x(x(s)))ds/O fa(s,z(2(s)))ds

¢1(t1) P2 (t1)
- / .ﬁwwm@»wg/ fols, 2(x(s)))ds]
0 0
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IN

la(tz2) —a(t)|

b1 (t2) Pa(t2) P2 (t1)

v / fi(s, x(a(s)))ds] / fols, x(a(s)))ds — / fals, 2(x(s)))ds]|
2 (t1) 1 (t2) o1(t1)

| / fols, x(a(s))ds] / Fi(s,x(a(s)))ds — / fi(s, x(a(s))ds] |

< altz) = a(ty)]

1 (t2) $2(t2)
+ / | f1(s, z(z(s)))|ds | fa(s,z(x(s)))ds|
0 ¢2(t1)
b2 (t1) @1 (t2)
b [ saaonlds | [ Atsatats)ds
0 ¢1(t1)
< altg —t1]
b1(t2) ¢2(t2)
+ / {Ima(s)] + brla(z(s))|}ds) (| {Ima(s)] + bola(z(s))[}ds|)
0 ¢2(t1)
P2 (t1) #1(t2)
+ (/ {Ima(s)| + ba|z(z(s)) | }ds) (| {Ima(s)| + br|z(z(s))|}ds])
0 ¢1(t1)
< alta —t1]

¢1(t2)
+ [era(ta) + by / (Llx(s)] + |2(0) }ds]
d2(t2)
[ex [éa(ta) — da(tr)| + b2 | / (Ll(s)] + |2(0) }ds]]
P2 (t1)
Pa(t1)
4+ [eada(ts) + b / {L]x(s)] + [2(0)]}ds]]

&1 (t2)
[e2 |61 (t2) — é1(t2)] + b /¢ o, L)+ 0))ds]

a |ty —t1]

[e1 + b1 {L T +[a(0)[}] [c2 +bo{L T+ [a(0)[}] ¢1(t2) [pa(t2) — da(t1)]
[e2 + bo{L T +1a(0)}] [e1 + bi{L T + [a(0)[}] da(t1) |p1(t2) — ¢1(t1)]
a |ty —t1]

[e1 +b1{L T + |a(0)|}] [c2 +b2{L T+ |a(0)|}] Tlts —t1]

[c2 4+ bo{L T + [a(0)[}] [c1 + b1 {L T +]a(0)|}] T [t2 — t]

alta —t1] +2T(c1 + b1 T)(ca + by T)[t2 — t]

alts — t1| + 2T M, Molts — t1| = Llts — ta].

N + 4+ IN + + IA

This proves that F': S;, — Sy, and the class {Fz} is equicontinuous.

Now the class of continuous functions {F'z} C Si C C[0,T] is uniformly bounded and
equicontinuous on Sz. Hence, applying Arzela-Ascoli Theorem [12] we deduce that
the operator F' is compact.
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Finally we show that F is continuous. Let {z,,} C Si such that z, — x¢ on [0,7],
then

[filt,zn(@n@)))] < Ima(@)] + bilzn (24 (2))]
< @)+ 6T, i=1, 2
and
[T (zn(t) —zo(zo ()] = |zn(zn(t) — 2n(20(t)) + Tn(z0(t)) — zo(z0(t))]

|2n (20 (8)) = 20 (o (t)] + [2n(20(t)) — o (20 (t))]
Ll (t) = xo(t)] + [z (20(t)) — zo(20(t))]

[VANVAN

This implies that

zn(wn(t))) = (2o(0(1)).

From the continuity of f;, ¢ =1, 2 in the second argument we have

f(t, xn(mn(t))) — f(t, mo(xo(t))).

Now by Lebesgue’s dominated convergence Theorem [12] we obtain

$1(1) $2(t)
lim (Fa,)(t) lim a(t)+ lim f1 (S,mn(xn(s)))ds/o f2(s, (20 (s)))ds

n— o0 n—oo n—oo 0

#1(¢) #2(t)
a(t)+/0 fl(s,xo(xo(s)))ds/o fg(s,zo(:co(s)))ds
= (Fl‘o)(t)

Then F is continuous. Using Schauder fixed point Theorem ([12]), then the operator
F has at least one fixed point x € Sp,. Consequently there exist at leat one solution
x € C[0,T] of equation (1).

Finally, from our assumptions we have

é1(t) $2(t)
z(t) = a(t) —|—/ fi(s, x(x(s)))ds/ f2(s,z(z(s)))ds >0, tel[0,T].
0 0
and the solution of the quadratic integral equation (1) is positive. O
Now the following two corollaries can be easily proved.
Corollary 1. Let the assumptions of Theorem 1 be satisfied. If the functions a, ¢

and ¢o are nondecreasing, then the solution of the quadratic integral equation (1) is
positive and nondecreasing.
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Corollary 2. Let the assumptions of Corollary 1 be satisfied. If, in addition
@i(t) =t, i =1, 2, then the quadratic integral equation

—|—/0 fl(s,x(x(s)))ds/o fg(s,x(az(s)))ds, te 0,7 (2)

has at least one positive and nondecreasing solution x € C[0,T].

Example 1. Consider the following quadratic integral equation

z(t) = (i + ;t) + /Oﬁlt (;836_52 + W) ds
A&%<éMm@@+n>+iuu@m)@, 3)

where ¢t € [0,1], f1 € (0,1], ¢ >1 and f2( < 1.

Here we have
In(1 + |z(z(t))])

£t x(z(t))) = %t?’e_tQ e

b)) < 580 + lale®) and i) = 3%,

Falt, 2((1))) = 2 cos(3(t + 1)) + arlar(a(®)],

ot ()] = 15l cos(3lt+ D) + oiloe()]  and  ma(t) = o[ cos(3(t + 1)1

Also we have ¢y(t) = fit, ¢2( ) = ﬁQtC at) =1 +it a=1% b =1 b =2,
01:%3 62:%7 and Ml 127 M2

Hence L ~0.368 < 1 and L T + |a(0 )|—0618<T—1

Now it is clear that all assumptions of Theorem 1 are satisfied, then equation (3) has
at least one solution.

3. Uniqueness of the solution

In this section we study the uniqueness of the solution = € C[0,T] of the quadratic
integral equation (1).
Consider the following assumption

(i7*) fi : [0,T] x [0,T] — Rt are measurable in ¢ for all z € C[0,T], satisfy the
Lipschitz condition

|fz(t O)| Cis Vte[OT]
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Theorem 2. Let the assumptions (i), (iv), (v) and (ii*) be satisfied, if

(Y1 b2 +72b1) T (L+1) <1,

where v; = (¢; +b;T)T, i = 1, 2, then equation (1) has a unique solution x € C[0,T].

Proof. From assumption (ii*) we can deduced that

[fi(t, )] < b |2 + [fit,0)] <bi 2]+ iy i=1,2,

then all assumptions of Theorem 1 are satisfied and the integral equation (1) has at
least one solution. Let x, y be two solutions of (1), then obtain

lz(t) —y(@)] =

IN

IN

_|_

@1(t) P2 (t)
) + [ hi(satele))ds [ fa(s.atao))ds
$1(t) P2(t)
aft) - / £ (5. 9(y(s))) ds / fo (5 5(y(5)))ds|

#1(t)

$2(t)
fi(s,x(x(s))) ds [/0 {f2(s,2(2(s))) = fa (s, y(y(s))) }ds]

0

$2(t) $1(t)
/ 2(s,y(y(s))) ds [/0 {f1(s,2(2(5))) = f1(5,9(y(s))) }ds]|

[
[
[
[

Pa(t

¢1(t

|f1(s,2(x
| f2(s,y(y
|f1(s,2(x

| f2(s,y(y

¢i(t)
/0 fi(s, 2(2(s))) lds

and

lz(x(s)) — y(y(s))|

P2 (t)

)| ds / (s, 2(2(s))) — fo(s, y(y(s))|ds
¢1(t)

)| ds / (s, 2(2(s))) — 1 (5, 9(y(s)) | ds
¢2(t)

)| ds b / l2((s)) — y(y(s))lds
1(t)

)| ds by / a(a(s)) — y(y(s))ds, (4)

#:(t) ¢4 (t)
b [ eaids+ [ 0)ds

@i (t)
bi/ (LT + 2(0)|}ds + cii(t)
0

IN

IN

< bigi(t) T + cigu(t)
[z(z(s)) — y(y(s) + z(y(s)) — z(y(s))]
|z (z(s)) — z(y(s))| + |z(y(s)) —
|
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Substituting (5) and (6) in (4) we can get
P2(t)
[2(t) —y(®)] < 7 b /0 {Llz(s) = y(s)| + |2 (y(s)) — y(y(s))| }ds

¢1(t)
+ wblj {Llz(s) — y(s)] + [2(y(5)) — u(u(s))| bds

0

IN

" b2 [z =yl (L+1) ¢2(t) +72 01 [l —yll (L+1) ¢1(t)

< (bt 720) T (L+1) [z -yl

and
[1—(mb2ty2b) T (L+D)] [z -yl <0,
then x(t) = y(t), t € [0,T] and equation (1) has a unique solution z € C[0,7]. O

Example 2. Let T =1, t € [0,1] and «, B, u, p € (0,1] are parameters. Consider
the following quadratic integral equation

2(t) = (i + ;t) +/OM (st b x(x(s))|> ds/oﬁt<gln(1 +lsl)+ ;|x(x(s))|> ds.
(7)

Here we have

fi(ta@®) = L + )],

88—t 14
1
|f1(t,$) - fl(t7y)| < ﬁ'x_ y|’
p 1
fa(t, 2(2(t)) = g n(l+ [t) + 5la( )],
and
1
|f2(t,$) - f?(tay)| < §|CC 7y‘
Also, mi(t) = g%, a1 = %, ma(t) = Eln(1+t]), co = %, 1(t) = at, ¢a(t) = Bt and
a():%—i—% thenweobtama—% b1=1—14,b2 é,Mlz 134 and My = %
HenceL:f<1andLT—|—|a( N=2<T=
Moreover we have ~; = 14, Yo = 2 and

(1 by 472 by) T (L+1) ~0.2210 < 1.

Now all assumptions of Theorem 2 are satisfied, then equation (7) has a unique
solution.

4. Continuous dependence

In this section we prove that the solution of equation (1) depends continuously on the
functions a, f1, fo.
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4.1. Continuous dependence on the function «

Definition 1. The solution of the integral equation (1) depends continuously on the
function @ if ¥V e> 03 6(e) >0 such that

la(t) —a* ()] <6 =z -7 <e (8)

where z* is the unique solution of equation
#1(¢) $2(t)
x*(t) = a*(¥) +/ fi (s,a:*(:c*(s)))ds/ fa(s,2*(z*(s)))ds, t€0,T]. (9)
0 0

Theorem 3. Let the assumptions of Theorem 2 be satisfied, assume that |a(t) —
a*(t)| < 4, then the solution of (1) depends continuously on the function a.

Proof. Let |a(t) —a*(t)] < d, then we can get

#1(t) $2(t)
lz(t) — z*(t)] = |a(t) +/O fl(s,x(:zz(s)))ds/o fz(s,x(x(s)))ds

P1(t) ¢2(t)
a*(t) _/0 fl(s,x*(x*(s)))ds/o fg(s,m*(x*(s)))ds‘
#1(¢)
= |a(t) — a*(t) +/ f1(s,z(2(s)))ds
0
#2(t) $2(t)
[/0 fg(s,x(x(s)))ds—/o fg(S,.CL' (x (s)))ds}

X

$2(t)
+/0 fg(s,x (z (s)))ds
$1(t) $1(t)
[ hlsate)as= [ plsa @ @)l

0
la(t) — a™(?)]

o1(t) P2 (t)
+ / 1 (s, 2(x(s))) |ds / (s, 2(@(5)) — faos,2" (@ (s)))Ids

X

IN

¢a(t) ¢1(t)
+/0 |fa(s,2% (2" (5))|ds / |1 (5 2(2(s))) i (5, 2" (2 (s))) ds

IN

¢1(t) P2(t)

5 / (c1 + baa(x(s))])ds by / la(x(s)) — 2 (* (5))ds
¢2(t) o1(t)

+ / (cz + bale™ (2" (5))[)ds by / (2 (s)) — 2* (2 (5))|ds
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IN

P2(t)
S My (0 b [ fala(e) — o @ (5) s

o1 (t)
A@@wm/' 2 (2(s)) — 2 (2 (5))|ds
0
0+ M T by (L+ 1)z —z"| ¢2(t)
My T by (L+1)|lz — 2| ¢1(t)
5 —+ (’71()2 + ’)/le)(L + 1) T HLE — (E*H,

IN + IN +

|z —2*|(1 = (rbe +72b1)(L+1) T) < 6

and

)
z—a% < =e.
| I = 1 — (71b2 + 7201 ) (L + 1)T

4.2. Continuous dependence on the functions f;

Here we prove that the solution of the equation (1) depends continuously on the func-
tion fi.

Definition 2. The solution of the integral equation (1) depends continuously on the
function f1 if Ve>036(e) >0 such that

it 2(@(t) = f (La(@®) < 6= [l -2 <e (10)
where z* is the unique solution of equation
#1(t) #2(t)
(1) = a(t) + / £ (s,2" (" (5))) ds / fa(s,a*(a*(s))ds,  te[0,T].
0 0

Theorem 4. Let the assumptions of Theorem 2 be satisfied, assume that

[fi(t 2 (z(t)) — f1 (t2(x()] <4,
then the solution of (1) depends continuously on the functions fi.

Proof. Let |fi(t,z(x(t))) — fi (t,z(z(t)))| <, then we obtain

o1(t) b2 (t)
Iﬂw—fW\:|dﬂ+A h@w@@D®A fo(s,2((s)))ds
o1(t) ¢2(t)
- uw—A ﬁ@w%ﬁ@ﬂwé fo(s,2* (a*(s))) ds|
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$1(2) B2(t)
= ’/0 fl(s,x(x(s)))ds/o fg(s,x(x(s)))ds
1(t) $2(t)
- / fl(s x*(z* (s )))dS/O f2(s,z(x(s)))ds
$2(t)
ds/o f2(s,z(x(s)))ds
P2(t)
)ds/o fa(s, 3" (2% (s)))ds|
$2(t)
= |/0 fg(s,a:(z(s)))ds

$1(1) #1(1)
X [/0 fl(s,x(x(s)))ds—/o fi(s,z*(z*(s)))ds]

P2 (75 1(75 o1 (t
: r/ ™ / ”
0 0 0
l1’1(15) a2 (t ¢2(t)
+ / ))ds [/ / )))ds]
0 0 0

P2 (t) P1(t) ¢1(t)
+ / fg(s,x*(x*(s)))ds [ f1 s z* f 8]|

0 0 0

Pa(t) ¢1(t)
+ / a5, 2" (2" (5))) lds / (5,2 (2 (5))) — £ (5,2 (" (s)) ds.

0

[}
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Using (5) and (6) we obtain

lx(t) —z*(t)] < ybi(L+ )Tz —z*|| + y1b2(L + V)T ||z — z™|| + v=T6,

[z —2*[|[[1 = (v2by + Mmb2)(L+ 1)T] < 42T6

and

e 0219 .
1 — (y2b1 +71b2)(L + 1)T

O

Corollary 3. Let the assumptions of Theorem 4 be satisfied. In Ezample 2 if u
changed to p*, then the solution of equation (7) depends continuously on p (the func-

tion f1).

4.3. Continuous dependence on the functions f,

By the same way, as in Theorem 4 we can prove that the solution of equation (1)
dependence continuously on the function fs.

Theorem 5. Let the assumptions of Theorem 2 be satisfied, assume that

[f2(t, z(2(t) = f5 (8, z(2(t)) < 0,
then the solution of (1) depends continuously on the functions fs.

Corollary 4. Let the assumptions of Theorem 5 be satisfied. In Example 2 if p
changed to p*, then the solution of equation (7) depends continuously on p (the func-
tion fa).
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