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1. Introduction

The theory of integral operators and integral equations is an important part of non-
linear analysis. This theory is frequently applicable in other branches of mathematics
and mathematical physics, engineering, economics, biology as well in describing prob-
lems connected with real world [1, 2, 7,9, 10, 11].

The aim of this paper is to investigate the existence of nondecreasing solutions of
a class of a quadratic integral equations of Volterra type. We will look for solutions
of those equations in the Banach space of real functions being defined and continuous
on a bounded and closed interval. The main tool used in our investigation is the
technique of measure of noncompactness which is frequently used in several branches
of nonlinear analysis [4, 7, 5, 9].

We will apply the measure of noncompactness defined in [6] to proving the solva-
bility of the considered equations in the class of monotonic functions.

The results of this paper generalize the results obtained earlier in the paper [3].
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2. Notation and auxiliary facts

Now, we are going to recall the basic results which are needed further on.

Assume that F is a real Banach space with the norm ||.|| and the zero element 0.
Denote by B(x,r) the closed ball centered at x and with radius r and by B, the ball
B(0,7). If X is a nonempty subset of E we denote by X, ConvX the closure and the
convex closure of X, respectively.

With the symbols AX and X + Y we denote the algebraic operations on the sets.
Finally, let us denote by 9 g the family of all nonempty and bounded subsets of E
and by g its subfamily consisting of all relatively compact sets.

Definition 2.1 (See [4]). A function p : Mg — [0,00) is said to be a measure of
noncompactness in the space E if it is satisfies the following conditions

1) The family kerp = {X € Mg : u(X) = 0} # @ and kerp C Ng,

2) X CY = u(X) < u(Y),

(

(

(3) u(X) = p(ConvX) = p(X),

4) pAX + (1 =N)Y) < pu(X)+ (1= M)u(Y), ford € [0,1],

(5) If {X, }n is a sequence of closed sets from Mg such that X, 1 C X, for
n=1,2,...and if lim,_,o p(X,) = 0, then the set Xo = (.2, X,, is nonempty.

The family kerp described above is called the kernel of the measure of noncompact-
ness p. Further facts concerning measures of noncompactness and their properties
may be found in [4].

Now, let us suppose that Q is a nonempty subset of the Banach space E and the
operator F': Q — FE is continuous and transforms bounded sets onto bounded ones.
We say that F satisfies the Darbo condition (with a constant k& > 0) with respect
to a measure of noncompactness p if for any bounded subset X of Q the following
inequality holds:

w(FX) < kp(X).

If F satisfies the Darbo condition with k£ < 1 then it is said to be a contraction with
respect to u, [8]. For our further purposes we will only need the following fixed point
theorem.

Theorem 2.1. Let Q be a nonempty, bounded, closed and convex subset of the Banach
space E and p be a measure of noncompactness in E. Let F : Q — Q be a continuous
transformation such that u(FX) < ku(X) for any nonempty subset X of Q, where
k €1[0,1) is a constant. Then, F has a fized point in the set Q, [3].

Remark 1. Under assumptions of the above theorem it can be shown that, the set
FizF of fixed points of F belonging to Q is a member of kery. This observation
allows us to characterize solutions of considered equations, [3].



Existence of Monotonic Solutions of a Class of Quadratic Integral Equations 119

In what follows, we will work in the classical Banach space C[0, M] consisting of
all real functions defined and continuous on the interval [0,M]. For convenience, we
write I = [0, M] and C(I) = C[0, M]. The space C(I) is furnished by the standard
norm ||z|| = max{|z(t)| : t € I}.

Now, we recall the definition of a measure of noncompactness in C(I) which will
be used in the sequel. That measure was introduced and studied in the paper [6].

To do this let us fix a nonempty and bounded subset X of C(I). For € > 0 and
x € X denote by w(z,e) the modulus of continuity of = defined by

w(z,e) = sup{|z(t) — z(s)| : t,s € I, |t — s| < e}.
Further, let us put
w(X,e) =sup{w(x,e) : x € X},

wo(X) = lim w(X,¢e).

e—0

Next, let us define the following quantities

i) = sup{le(s) — 2(t)| - [e(s) —a(t)] : ;s € I, t < s},

i(X) =sup{i(x) : z € X}.

Observe that, i(X) = 0 if and only if all functions belonging to X are nondecreasing
on I. Finally, let us put

H(X) = wo(X) +i(X).

It can be shown that, the function u is a measure of noncompactness in the space
C(I) (see [6]). Moreover, the kernel kery consist of all sets X belonging to My
such that all functions from X are equicontinuous and nondecreasing on the interval
1.

3. Main result

In this section, we apply the above defined measure of noncompactness p to the study
of monotonic solutions of our integral equation.
We consider the following nonlinear integral equation of Volterra type

~(t)
z(t) = a(a(t)) + (Tx)(ﬁ(t))/o v(t, 7, z(n(r)))dr, t€l=1][0,M]. (3.1)

The functions a(«(t)), v(t, 7,2(n(7))) and (T'z)(5(t)) appearing in this equation are
given while x = z(¢) is an unknown function. This equation will be examined under
the following assumptions:
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(1) a,B,7,m: I — I are continuous functions and «, 3, are nondecreasing on I.
(#4) The function a € C(I) is nondecreasing and nonnegative on the interval I.

(#7) v: I xIxR — Ris a continuous function such that v : I x I xR — R and for
arbitrarily fixed 7 € I and « € Ry the function ¢ — v(¢, 7, 2) is nondecreasing
on I.

(iv) There exists a nondecreasing function f : Ry — R, such that the inequality
[v(t, 7, 2)| < f(Jz|) holds for t,7 € I and x € R.

(v) The operator T' : C(I) — C(I) is continuous and T is a positive operator, i.e.
Tx>0if2>0.

(vi) There exist nonnegative constants ¢, d and p > 0 such that [(Tx)(t)| < c+d||z||?
for each z € C(I) and all ¢t € I.

(vii) The inequality a(||la|]) + (¢ + dr?)M f(r) < r has a positive solution ry.

(viti) The operator T in B} = {x € B, : (t) > 0, t € I} satisfies the inequality
w(TX) < 0u(X) for the measure of noncompactness p with a constant 6 such
that M f(ro)f < 1, where 6 € [0,1).

Then, we have the following theorem:

Theorem 3.1. Under the assumptions (i)-(viii) the equation (3.1) has at least one

solution x = x(t) which belongs to the space C(I) and is nondecreasing on the inter-
val 1.

Proof. Let us consider the operator V' defined on the space C(I) in the following
way:

~(t)
(Va)(t) = ala(t)) + (T2)(B(1)) / olt, 7, 2(n(r)))dr.

The proof will now proceed in two steps: firstly V' is continuous and secondly V is
contraction transformation on B;f C C(I).

Step 1. In view of the assumptions (i), (i4), (¢4) and (v) it follows that, the
function Vz is continuous on I for any function x € C(I), i.e., V transforms the space
C(I) into itself. Moreover, keeping in mind the assumptions (iv) and (vi) we get

(1)
|(Va)(t)] < |a(04(t))|+|(T$)(5(t))|/0 o(t, 7, 2(n(7)))dr

IN
=

~(t)
a(llall) + (c + dljz|) / F(le(n(r) )dr

IN

v(t)
a(lled]) + (¢ + d\lffllp)/0 fl=]))dr
a(lledl]) + (e + dl|[|”) M f([|]])-

IA
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Hence, we obtain the inequality
V|| < alllel) + (e + dll<][”) M f([|])-

For rg > ||z|| such that provide assumption (vii), we get ||Vz|| < ro. This shows that
V transforms the ball B, into itself i.e., V : B, = B,,.

Let us consider the operator V on the subset B} of the ball B, defined by
Bl ={x € By, :x(t) >0, tel}.

Since the function x defined as x(t) = ro for all t € I is a member of the set B}, the
set B;E is nonempty. Since B,, is bounded, B;'[) is bounded. The inequalities

Az(t) + (1 — Ny(t) >0

and

Az 4+ (1= Nyl < Azl + (1= Myl < Aro + (1 = A)ro = 7o

hold for all x,y € B;’B, t € I and A such that 0 < A < 1. So, B;E is convex.

Let us take a convergent sequence (x,) C B;E C B,, so that lim, oz, = x.
Since

Jn — ] = max | (t) — 2(5)] = 0 (1~ o),

we get limy, o0 2n(t) = x(t). Hence, we have x(t) > 0 for all t € I. Thus, z € B}
and Bjf is closed.

In view of these facts and assumptions (i), (éi), (¢47) and (v) it follows that V
transforms the set B; into itself.

Now, we show that V is continuous on the set B,,J.g . To do this let us fix € > 0 and
take arbitrarily z,y € B} such that ||z —y|| < e. Then, for ¢ € I we get the following
inequalities:

(Va)(t) — (Vi) (o)
(1) ~(t)

= |@o)sw) / olt, 7, 2(n(r)))dr — (Ty)(B(2)) / olt, 7, y(n(r))dr
0 0

IN

~(t) ~(t)
(T2)((1)) / olt, 7 2(n(r)))dr — (Ty) (B(1)) / oft, 7 2(n(r)))dr

~(t) ~(t)
+ @) B / olt, 7,2 (n(r)))dr — (Ty)(B(1)) / o(t, 7, y(n(r)))dr
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IN

v(t)
[(T)(B(t)) — (Ty)(ﬁ(l‘))\/O lu(t, 7, z(n(7)))|dr

v(t)
+ \(Ty)(ﬁ(t))\/o l(t, 7, 2(n(7))) —v(t, 7, y(n(7)))| dr

IN

v(t)
[(Tz)(B(t)) — (Ty)(ﬁ(t))\/o f(lz(n(r)))dr

v(t)
+ \(Ty)(ﬁ(t))\/o l(t, 7, 2(n(7))) — v(t, 7,y(n(7)))| dr

IN

v(t)
[(Tz)(B(t)) — (Ty)(ﬁ(t))\/o flzl)dr

~(t)
T EO)) / [o(t, 7, £(9(7))) = v(t, 7, y(n(r))) | dr

IN

v(t)
[(Tz)(B(t)) — (Ty)(ﬂ(t))\/o f(ro)dr

y(t)
+ \(Ty)(ﬁ(t))\/o l(t, 7, 2(n(7))) — v(t, 7,y(n(7)))| dr

IN

~(t)
(T — Ty)(B®))] / F(ro)dr

v(t)
+ (chdHyll”)/0 lw(t, 7, z(n(7))) —v(t, 7, y(n(r)))| dr

(1)

(1)
ITz — Ty / fro)dr+ (c+dt)y [ B (e)dr
0 0

[Tz = Tyl M f(ro) + (c + drg) Br, (€)M,

IN

A

where G, () is defined as
Bro () = sup{|v(t, 7,z) —v(t,7,y)|: t,7 €1, x,y € [0,79], |x —y| < e}
From the above estimate we obtain the following inequality:
Ve = Vy|| < |Tx — Tyl Mf(ro) + (c+ drf) MpBy, (¢)-

From the uniform cotinuity of the function v on the set I x I x [0, 7] we have that
Bro(e) = 0 as e — 0 and from the continuity of T', we have that | Ta — Ty|| — 0 as
€ — 0. The last inequality implies continuity of the operator V' on the set B;B .

Step 2. In what follows let us take a nonempty set X C Bra' . Further, fix
arbitrarily a number € > 0 and choose € X and ¢, s € [0, M] such that |t — s| <e.
Without loss of generality we may assume that t < s. Then, in view of our assump-
tions we obtain
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(1)

(Tx) (8(s)) / o(s, 7, 2(n(r)))dr — (Tz) (B(1)) / olt, 2 (n(r)))dr

0

IN

w(a, w(a, €)) +

v(s)
[(Tz)(B(s)) — (Tw)(ﬂ(t))]/o v(s, 7, x(n(7)))dr

~(s) ~(s)
(T) (B(1)) / o(s, 7, 2(n(r)))dr — (Tz) (B(1)) / olt, 2 (n(r)))dr

~(s) ~(t)
(T) (B(1)) / oft, 7,2 (n(r)))dr — (Tz) (B(1)) / olt, 7, 2(5(r)))dr

v(s)
< w(avw(aﬁ))ﬂ(Tx)(B(S))*(Tw)(ﬁ(t))\/o lu(s, 7, 2(n(7)))|dr
v(s)
+ I(Tx)(ﬁ(t))l/0 (s, 7 2(n(7))) — v(t, 7, 2(n(7)))|dr
v(s)

+ [(Tz)(B)]

/ v(t, T, z(n(T)))dr
(1)

(

9
& (e)dr

IN

v(s)
w(a,w(a,e))er(T:E,w(B,s))/O f(To)dT+(C+dTg)/

0
(c+drg)f(ro)|y(s) — ()]
w(a, w(a,e)) + w(Tz, w(B,e))Mf(ro) + (c + drf) M&,, (¢)
+  (e+drg) f(ro)lv(s) = ()],

where &, (¢) is defined as

IN +

& (€) = sup{|v(s, 7, 2)) —v(t,m, )| : t,s,7 €1, |[s—t] <e, xe€[0,r0]}.

Notice, that in view of the uniform continuity of the function v on the set I x I x [0, 7]
and from the uniform continuity of the function v on the interval I, we have &, (¢) — 0
as € — 0 and (y(s) —~(¢)) — 0. Thus, we have the inequality

|(Va)(s) — (V) (1)
< w(a,w(a,e)) +w(Tz,w(B,e))Mf(ro) + (¢ + drh) ME&,, ()
+ (e+drg)f(ro)ly(s) — ()]
If we take the supremum at this inequality over the t’s and s’s, we have the inequality
w(Va,e) < w(a,w(a,e)) +w(Tz,w(B,e))Mf(ro) + (c+ drf) M&,, ()
+ (c+drg) f(ro)w(v,e).
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If we take the supremum at this inequality over x’s, we have the following estimation

w(VX,e) w(a, w(ev,e)) + w(TX, w(B,e))Mf(ro) + (¢ + drg) My, ()

<

+ (e+drf)f(ro)w(y,e).

For € — 0, we have

wo(VX) < M f(ro)we(TX). (3.2)

On the other hand, let us fix arbitrarily x € X and ¢,s € I such that ¢ < s. Then,
we have the following estimate:

|(Va)(s) — (Va)(t)| = [(Vz)(s) — (V) ()]
v(s)

a(a(s)) + (Tx)(ﬂ(S))/ v(s, 7, x(n(7)))dr

0

v(t)
- a(a(t))*(TfU)(ﬂ(t))/O o(t, 7, z(n(7)))dr

v(s)
- {a(a(S))vL(va)(ﬁ(S))/O v(s, 7, x(n(7)))dr

~(t)
~ a(alt)) - (T2)(B(®)) / v(t,r,xm(r)))czf]
< fala(s) — a(a(®)| - (a(a(s)) — a(a(t))]
~(s) ~(t)
4 ‘(Tﬂc)(ﬁ(S)) / o(s, 7, 2(n(r)))dr — (Tx)(B()) / olt, 7, 2(n(r)))dr

0

~(s) ~(t)
- [(Txm(s)) [ s matutenar - e | v(t,r,xm(r)))dr]

v(s) v(s)
< ](Txxms» [ ssmstutmyar - o) [ s matu(rir

~(s) ~(t)
+ ’(Tw)(ﬁ(t)) / ofs, 7, 2(n(7)))dr — (Tz) (B(1)) / olt, 2 (n(r)))dr

v(s) v(s)
- [(Txxﬁ(s)) [ s matutrnar - e [ v(smw(n(f)))dT}

~(s) ~(t)
(T) (B(1)) / o(s, 7, 2(n(r)))dr — (Tx)((1)) / v(t,T,w(n(T)))dT]

IN

v(s)
[[(Tz)(B(s)) — (Tz)(B1))| — [(Tz)(B(s)) — (Tff)(ﬁ(t))]]/O v(s, 7, x(n(7)))dr
< [(Tz)(B(s)) — (Tz)(B(1)| = [(T2)(B(s)) — (Tx)(BE)]]M f(ro).-

If we take supremum on both sides of this inequality over the ¢,s € I = [0, M], we
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have the inequality

i(Va) < Mf(ro)sup[|(Tx)(B(s)) — (Tx)(B(t))| — [(Tx)(B(s)) — (Tx)(B())]]
< Mf(ro)i(Tx),

since the function § is nondecreasing. If we take supremum over the x’s, we get the
inequality

(VX)) < Mf(ro)i(TX). (3.3)
Finally, from the inequalities (3.2) and (3.3), we obtain
WV X) < Mf(ro)(TX) < M f(ro)0u(X),
From the assumption (viii) which is
Mf(rg)d <1

and by applying Theorem 2.1, V' has a fixed point in the set Bjo.

Let us remember that from Remark 1, the set FixV of fixed points of V' belonging
to C(I) is a member of kerp. i.e. p(FixV) = 0 and this implies ¢(FixV') = 0. Therefore
the solutions are nondecreasing on I. Thus the proof is completed. O

Corollary 3.1. We assume that the function a is positive, the function f is contin-
uous and the assumptions (i)-(vi) and (viii) are provided in the Theorem 3.1. Let us
take the inequality

a(llel)) + (c+d)Mf(1) <1
instead of (vii). So, the function h defined as
h:[0,1] = R, h(r) = a(||al]) + (c+ dr?)M f(r) —r
is continuous and
h(0) = a(l|all) + M f(0) > 0
and
(1) = a(||el)) + (c+ d)Mf(1) — 1 < 0.

Thus, there exists at least one a number ry € (0,1) such that h(ro) = 0. Consequently,
all of the assumptions of the Theorem 3.1 hold and the equation (3.1) has at least one
solution x = x(t) € B} .

Example 3.1. Let us consider the equation

)
dr, tel=][0,1], (3.4)

t? N 1+ 2%(¢) /t2 sint + e*(”
5 2 0 8+
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where a(t) = 12, B(t) = t, y(t) = 2, n(7) = 72, a(s) = £, a(a(t)) = % and the

function a is nondecreasing and positive and [a| = 1, a([|a|)) = 2.
sint + e*
t7 ) = 5 . _
vlt,72) 8+
and 21
14+ 22(t
(Tz)(t) = —
We have the following estimate
sint + e” 1+e® 14l
4 = < =
ol 7y)| = [T2EE) < T2 < 1T o)

for all t,7 € I and x € R. From the above equation we see that f(x) = %. Let
us see that the operator T' is continuous. Let xy be arbitrarily element chosen from
C(I). For ||z — zo|| < 0, we have the following estimate:

2 2
Tz — Tay| = max 1+a2%()  1+a5(b)
tel 2 2
_ 1 20\ _ 2
= 5 max|2*(t) — 5(t)]
1
= 5 maxla(t) — zo(0)[2(1) + wo(1)]
and
lz(t)] = [x(t) —zo(t) + 2o ()] < |2(t) — 2o(t)] + |zo ()] < [lz — 2ol + [[z0]l
such that,

[z(t)] < 6+ [zol|- (3.5)
From the inequality (3.5), we obtain
|[2(t) + 2o ()] < [2(t)] + [[zol] < &+ 2|zol|-

Thus, we obtain

L max [[2(t) — 2o(8)||2(t) + 2o(8)]

Te—T
17w = Txol 2 tel

IN

1
5 (6 -+ 2z max () — 2o 1)
1
= 50+ 2flzolDlz — ol
Taking

1
50+ 2a0])d =
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we get

8242zl =26 =0 = (3+ |zol)? - [lzo]> — 2 =0
= (6+ llzol)? = llzoll® + 2¢

= d+ |lzoll = V/lzol* + 2e.
If § is chosen as
§ = /|lzo||* + 2 — [|xo]| > 0,

it is seen that the operator T is continuous at the point zy. Since x( is an arbitrarily
element chosen from C(I), T is continuous on C(I). On the other hand, for each
x € C(I) and each t € I the inequality

(Tx) ()] < e+d|z]]”, (p>0)

is provided. Namely,

L0 L 0l = 4 P <+ gl =30 d= 3, p=2
There exists ry positive solution that provides the inequality

a([[el) + (e +dr?)M f(r) <,
where ||a|| =1, a(||a||) = £, M = 1. Any number ry which provides the inequality

0,375018 < 1y < 1,65394
is a solution of the following inequality:
1 1 1 1
Sho(4en)(=+=2) <
5+8( +e)(2+2r>_r

For example rg = 1 is a solution of this inequality.
Let X #0, X CBf, z ¢ B;‘; and tq,ty € I. We have the following estimate:

T0?

L+a%(ty)  1+2°(h)

(Ta(t2)) — (Tx(ty))| = ‘

2 2
< glelta) + a(t)x(ts) — ()
< G Ua(ea) + o)) — ot
< Ul + lelatts) — ()
< ro)lats) — x(t)
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S [(Tz)(t2)) — (T)(t))] < S |(t2) — 2(t1)]

w(Tz,e) < w(z,e).

Thus, we have the following inequalities:

sup w(Tx,e) < sup w(x,e),
reX zeX

w(TX,e) <w(X,e),

lim w(TX,e) < limw(X,¢),
e—0 e—0

Let X #0, X C B, =z € B, t; <ty andt,ty € I. In this case we have the
following estimate:

Hence,

(T)(t2) — (Tz)(t1)] = [(T2)(t2) — (Tx)(t1)]
1+.’E2(t2)—1—$2(t1) 1+£L’2(t2)—1—$2(t1)
2 B [ 2

|z (t2) — 2(t2)[2(t2) + x(t1)] - %[(x(tz) — x(tr))(x(t2) + z(t1))]
(le(t2)| + [x(t)]) [Je(t2) — x(t)] = (2(t2) — x(t1))]
(]l + [z ll2(t2) — w(t)] = (2(t2) — 2(t1))]

[[z(t2) — x(t1)] — (z(t2) — z(t1))]
[2(t2) — x(t1)] — [2(t2) — x(t1)].

NP N~ DN RN~
[N}
3
o

sup [[(Tz)(t2) — (Tz)(t1)| = [(T)(t2) — (Tz)(t1)]]

ti,ta€l

< ts;ué][Im(tz) —x(t1)] — [x(t2) — 2(t1)]],

i(Tx) < i(x)

in view of the inequalities,

sup ¢(Tx) < sup i(x)
reX zeX
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and so, we obtain

(TX) <i(X). (3.7)
From the inequalities (3.6) and (3.7), we get

WTX) < p(X),

where 6 can be taken as 6 = 1. In this case the inequality M f(r9)f < 1 holds.
Because, for 0 =1, 1o =1, M =1 and f(1) = %7 the inequality

1+e
T8

holds. Since all of our assumptions are satisfied, this equation has a nondecreasing
solution on Bjf.

<1

MF(1)0

Remark 2. In the Example 3.1, since
1
(T2)(®)] < 5 + S ll=]”

v)
[(Tz)(®)] < ¢ +dz|

N | =

for all z € C(I) and t € I, the condition

—~

in [3] does not hold. Hence, the result given in [3] is not applicable to the integral
equation (3.4) in the Example 3.1.

Example 3.2. Let us consider the equation

dr, teI1=100,1,  (3.8)

3 s t? x(r?
ot sm(t—1—|—2)+1+x3(t)/ tant + e*(7)
0

5 7 2471

2. the function a(t) = w is

where a(t) = t, B(t) = t, v(t) = 3, n(r) = 7

1 We have the following estimate:
+e
2

nondecreasing and positive and a(||a]) = £

_ V3

tant + e*
2471

C o V3 + el”!

N ()

|U(t7 7, SU)| =

for all t,7 € I and € R. From the above equation, we see that f(x) = % and

(Tz)(t) = L:(t) It is obvious that T : C(I) — C(I). Let us see that the operator T
is continuous. Let zy be an arbitrarily element chosen from C(I). When ||z — x| < §

we have the following estimate:

L+ad(t)  1+a3(t)

Te -T
T~ T d .

max
tel
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|22 (t) + x(t)ao(t) + x5 (t)] |((t) = 2o (t))* + 3a(t)zo(t))]
[((t) = 2o(£))|? + 3|z (t)zo (1)
6% + 3Ja(t) — wo(t) + zo(t)]|z0(t)]

8% + 38| wol| + 3|0l

IN A CIA

From the above inequalities, we obtain

T2~ Taoll = 2 maxlla(t) — wo(0)[#2(6) + o(0)ro(t) + (1)

1

< 26+ 38 ol + 38lwol)
1

= §((5 + llzoll)® = llzoll?)

= 26+ lloll? — 2ol =

= LG mol)® = & + 2ol
= x =c+ |z
7 0 70

1
= 6+ [lwoll = (Te + [lo]*)?
= 8= (Te + [lzo]®)¥ — flzol| > 0.
If § is chosen as & = (7e + ||xq||®)3 — ||lzo|| > 0, it is seen that the operator T is

continuous at the point z. Since xq is an arbitrarily element chosen from C(I), T is
continuous on C(I). Since

1+ 23(t) 1 1 4 1 1 3 1 1, 4
Tz)(t)| = | ———2| < =+ =z°(t)| = =+ =|z(®)]" < = + =
|(Tz) ) \ | <zl 0= 2 2O < =+ e,
1 1
& 7) 77p )

the inequality
(Tz)(t)] < c+dz]]”, (p>0)
holds. There exists positive solution rg that provides the inequality
a(llall) + (¢ + dr?)M f(r) <,

where |laf| =1, a(|laf]) = £, M = 1.
Any number 7y providing the inequality

0,386812 < rg <1,32116

is a solution of the following inequality:

(;(\/g-‘r er)) (; - ;r?’) + % <
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For example rg = 1 is a solution of this inequality.
For any t1,ts € [0,1] such that [t — ;] <&, 0 # X C Bt = Bf and z € X, we
obtain

x3 e
[(Tz)(t2) — (Tx)(t1)] = 1+ 2%(ta) 14 2°(t)

T 7

— 2la) - (0
%|$(t2) — x(ty) |2 (t2) + w(t2)z(t1) + 2% (t)]

%Ifc(b) = a(t)](|o* (t2)] + |2 (t2)x(t)] + |2°(t1)])

IN

IN

1
< ;lfﬂ(b)—3?(t1)|3||$||2

3
< Zlalts) —a(t)]

If we take the supremum on both sides of inequality over t1,t; € [ such that
[ta —t1] <eand z € X, we get

w(Tz,e) < %w(m,a).
If we take the supremum at this inequality over x € X, we get
w(TX,e) < %w(X, £),
where, for ¢ — 0, we obtain
wo(TX) < Jun(X). (39)
For any t1,t3 € [0,1] such that t; < t5, ) # X C B} = Bf and = € X, we get

|(Tx)(t2) = (Tx)(tl)l— (Tz)(ts ( )( V)]

_ 1—|—1:3(t2) 1+az 1—|—3: 1—|—1:( 1)
o 7 7
= - |2%(t) — 2% (ta |** (t2) — 2°(t1)]

|(w(t2) = 2(t1) (2*(t2) + 2(t2)z(tr) + 2% (t1))]

(2(t2) = x(t1))(2* (t2) + 2(t2)a(tr) + 2° (1))

(2%(t2) + a(t2)x(tr) + 22 (1)) [|2(t2) — o (t2)| = (a(t2) — 2(t1))]
][l (t2) = 2(t)] = (2(t2) — 2 (t2))]

[z (t2) — 2(t1)] — (x(t2) — 2(t1))]-

IN
R TR [N TN TN T

IN



132 O. Karakurt and O.F. Temizer
If we take the supremum at this inequality over ¢y, ¢y € [0, 1] such that ¢; < to, we get
. 3.
i(Tz) < ?z(z)

If we take the supremum at this inequality over z € X, we get
3
i(TX) < Zi(X). (3.10)
From the inequalities (3.9) and (3.10) we get

p(TX) < 2u(X).

Then, 6 can be taken as 6 = % Forr=1,0= % and M =1, we get

Thus, all of our assumptions provide and hence this equation has a nondecreasing
solution on Bjf.

Remark 3. In the Example 3.2, since

| =

(T2)0)] < 5 + 2P

v)
[(Tz)(®)] < ¢ +dz|

—~

for all z € C(I) and t € I, the condition

in [3] does not hold. Hence, the result given in [3] is not applicable to the integral
equation (3.8) presented in the Example 3.2.
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