Journal of Mathematics and Applications

JMA No 42, pp 117-133 (2019)

The Existence of Monotonic Solutions of a Class of Quadratic Integral Equations of Volterra Type

Osman Karakurt and Ömer Faruk Temizer*

ABSTRACT: Using the technique associated with measure of non-compactness we prove the existence of monotonic solutions of a class of quadratic integral equation of Volterra type in the Banach space of real functions defined and continuous on a bounded and closed interval.

AMS Subject Classification: 45D05, 45M20.

Keywords and Phrases: Nonlinear Volterra integral equations; Measure of noncompactness; Fixed point theorem.

1. Introduction

The theory of integral operators and integral equations is an important part of non-linear analysis. This theory is frequently applicable in other branches of mathematics and mathematical physics, engineering, economics, biology as well in describing problems connected with real world [1, 2, 7, 9, 10, 11].

The aim of this paper is to investigate the existence of nondecreasing solutions of a class of a quadratic integral equations of Volterra type. We will look for solutions of those equations in the Banach space of real functions being defined and continuous on a bounded and closed interval. The main tool used in our investigation is the technique of measure of noncompactness which is frequently used in several branches of nonlinear analysis [4, 7, 5, 9].

We will apply the measure of noncompactness defined in [6] to proving the solvability of the considered equations in the class of monotonic functions.

The results of this paper generalize the results obtained earlier in the paper [3].

2. Notation and auxiliary facts

Now, we are going to recall the basic results which are needed further on.

Assume that E is a real Banach space with the norm $\|.\|$ and the zero element 0. Denote by B(x,r) the closed ball centered at x and with radius r and by B_r the ball B(0,r). If X is a nonempty subset of E we denote by \overline{X} , ConvX the closure and the convex closure of X, respectively.

With the symbols λX and X + Y we denote the algebraic operations on the sets. Finally, let us denote by \mathfrak{M}_E the family of all nonempty and bounded subsets of E and by \mathfrak{N}_E its subfamily consisting of all relatively compact sets.

Definition 2.1 (See [4]). A function $\mu: \mathfrak{M}_E \to [0, \infty)$ is said to be a measure of noncompactness in the space E if it is satisfies the following conditions

- (1) The family $\ker \mu = \{X \in \mathfrak{M}_E : \mu(X) = 0\} \neq \emptyset$ and $\ker \mu \subset \mathfrak{N}_E$,
- (2) $X \subset Y \Rightarrow \mu(X) \leq \mu(Y)$,
- (3) $\mu(\overline{X}) = \mu(\operatorname{Conv} X) = \mu(X),$
- (4) $\mu(\lambda X + (1 \lambda)Y) \le \lambda \mu(X) + (1 \lambda)\mu(Y)$, for $\lambda \in [0, 1]$,
- (5) If $\{X_n\}_n$ is a sequence of closed sets from \mathfrak{M}_E such that $X_{n+1} \subset X_n$ for $n=1,2,\ldots$ and if $\lim_{n\to\infty} \mu(X_n)=0$, then the set $X_\infty=\bigcap_{n=1}^\infty X_n$ is nonempty.

The family $\ker \mu$ described above is called the kernel of the measure of noncompactness μ . Further facts concerning measures of noncompactness and their properties may be found in [4].

Now, let us suppose that Q is a nonempty subset of the Banach space E and the operator $F:Q\to E$ is continuous and transforms bounded sets onto bounded ones. We say that F satisfies the Darbo condition (with a constant $k\geq 0$) with respect to a measure of noncompactness μ if for any bounded subset X of Q the following inequality holds:

$$\mu(FX) \le k\mu(X)$$
.

If F satisfies the Darbo condition with k < 1 then it is said to be a contraction with respect to μ , [8]. For our further purposes we will only need the following fixed point theorem.

Theorem 2.1. Let Q be a nonempty, bounded, closed and convex subset of the Banach space E and μ be a measure of noncompactness in E. Let $F: Q \to Q$ be a continuous transformation such that $\mu(FX) \leq k\mu(X)$ for any nonempty subset X of Q, where $k \in [0,1)$ is a constant. Then, F has a fixed point in the set Q, [3].

Remark 1. Under assumptions of the above theorem it can be shown that, the set FixF of fixed points of F belonging to Q is a member of $\ker \mu$. This observation allows us to characterize solutions of considered equations, [3].

In what follows, we will work in the classical Banach space C[0, M] consisting of all real functions defined and continuous on the interval [0,M]. For convenience, we write I = [0,M] and C(I) = C[0,M]. The space C(I) is furnished by the standard norm $||x|| = \max\{|x(t)| : t \in I\}$.

Now, we recall the definition of a measure of noncompactness in C(I) which will be used in the sequel. That measure was introduced and studied in the paper [6].

To do this let us fix a nonempty and bounded subset X of C(I). For $\varepsilon > 0$ and $x \in X$ denote by $w(x, \varepsilon)$ the modulus of continuity of x defined by

$$w(x,\varepsilon) = \sup\{|x(t) - x(s)| : t, s \in I, |t - s| \le \varepsilon\}.$$

Further, let us put

$$w(X, \varepsilon) = \sup\{w(x, \varepsilon) : x \in X\},\$$

$$w_0(X) = \lim_{\varepsilon \to 0} w(X, \varepsilon).$$

Next, let us define the following quantities

$$i(x) = \sup\{|x(s) - x(t)| - [x(s) - x(t)] : t, s \in I, \ t \le s\},$$
$$i(X) = \sup\{i(x) : x \in X\}.$$

Observe that, i(X) = 0 if and only if all functions belonging to X are nondecreasing on I. Finally, let us put

$$\mu(X) = w_0(X) + i(X).$$

It can be shown that, the function μ is a measure of noncompactness in the space C(I) (see [6]). Moreover, the kernel $\ker \mu$ consist of all sets X belonging to $\mathfrak{M}_{C(I)}$ such that all functions from X are equicontinuous and nondecreasing on the interval I.

3. Main result

In this section, we apply the above defined measure of noncompactness μ to the study of monotonic solutions of our integral equation.

We consider the following nonlinear integral equation of Volterra type

$$x(t) = a(\alpha(t)) + (Tx)(\beta(t)) \int_0^{\gamma(t)} v(t, \tau, x(\eta(\tau))) d\tau, \quad t \in I = [0, M]. \tag{3.1}$$

The functions $a(\alpha(t))$, $v(t,\tau,x(\eta(\tau)))$ and $(Tx)(\beta(t))$ appearing in this equation are given while x=x(t) is an unknown function. This equation will be examined under the following assumptions:

- (i) $\alpha, \beta, \gamma, \eta$: $I \to I$ are continuous functions and α, β, γ are nondecreasing on I.
- (ii) The function $a \in C(I)$ is nondecreasing and nonnegative on the interval I.
- (iii) $v: I \times I \times \mathbb{R} \to \mathbb{R}$ is a continuous function such that $v: I \times I \times \mathbb{R}_+ \to \mathbb{R}_+$ and for arbitrarily fixed $\tau \in I$ and $x \in \mathbb{R}_+$ the function $t \to v(t, \tau, x)$ is nondecreasing on I.
- (iv) There exists a nondecreasing function $f: \mathbb{R}_+ \to \mathbb{R}_+$ such that the inequality $|v(t,\tau,x)| \leq f(|x|)$ holds for $t,\tau \in I$ and $x \in \mathbb{R}$.
- (v) The operator $T:C(I)\to C(I)$ is continuous and T is a positive operator, i.e. $Tx\geq 0$ if $x\geq 0$.
- (vi) There exist nonnegative constants c, d and p > 0 such that $|(Tx)(t)| \le c + d||x||^p$ for each $x \in C(I)$ and all $t \in I$.
- (vii) The inequality $a(\|\alpha\|) + (c + dr^p)Mf(r) \le r$ has a positive solution r_0 .
- (viii) The operator T in $B_{r_0}^+ = \{x \in B_{r_0} : x(t) \ge 0, t \in I\}$ satisfies the inequality $\mu(TX) \le \theta \mu(X)$ for the measure of noncompactness μ with a constant θ such that $Mf(r_0)\theta < 1$, where $\theta \in [0,1)$.

Then, we have the following theorem:

Theorem 3.1. Under the assumptions (i)-(viii) the equation (3.1) has at least one solution x = x(t) which belongs to the space C(I) and is nondecreasing on the interval I

Proof. Let us consider the operator V defined on the space C(I) in the following way:

$$(Vx)(t) = a(\alpha(t)) + (Tx)(\beta(t)) \int_0^{\gamma(t)} v(t, \tau, x(\eta(\tau))) d\tau.$$

The proof will now proceed in two steps: firstly V is continuous and secondly V is contraction transformation on $B_{r_0}^+ \subset C(I)$.

Step 1. In view of the assumptions (i), (ii), (iii) and (v) it follows that, the function Vx is continuous on I for any function $x \in C(I)$, i.e., V transforms the space C(I) into itself. Moreover, keeping in mind the assumptions (iv) and (vi) we get

$$\begin{split} |(Vx)(t)| & \leq |a(\alpha(t))| + |(Tx)(\beta(t))| \left| \int_0^{\gamma(t)} v(t,\tau,x(\eta(\tau))) d\tau \right| \\ & \leq a(\|\alpha\|) + (c+d\|x\|^p) \int_0^{\gamma(t)} f(|x(\eta(\tau))|) d\tau \\ & \leq a(\|\alpha\|) + (c+d\|x\|^p) \int_0^{\gamma(t)} f(\|x\|) d\tau \\ & \leq a(\|\alpha\|) + (c+d\|x\|^p) M f(\|x\|). \end{split}$$

Hence, we obtain the inequality

$$||Vx|| \le a(||\alpha||) + (c + d||x||^p) M f(||x||).$$

For $r_0 \ge ||x||$ such that provide assumption (vii), we get $||Vx|| \le r_0$. This shows that V transforms the ball B_{r_0} into itself i.e., $V: B_{r_0} \to B_{r_0}$.

Let us consider the operator V on the subset $B_{r_0}^+$ of the ball B_{r_0} defined by

$$B_{r_0}^+ = \{ x \in B_{r_0} : x(t) \ge 0, \ t \in I \}.$$

Since the function x defined as $x(t) = r_0$ for all $t \in I$ is a member of the set $B_{r_0}^+$, the set $B_{r_0}^+$ is nonempty. Since B_{r_0} is bounded, $B_{r_0}^+$ is bounded. The inequalities

$$\lambda x(t) + (1 - \lambda)y(t) \ge 0$$

and

$$\|\lambda x + (1 - \lambda)y\| \le \lambda \|x\| + (1 - \lambda)\|y\| \le \lambda r_0 + (1 - \lambda)r_0 = r_0$$

hold for all $x, y \in B_{r_0}^+$, $t \in I$ and λ such that $0 \le \lambda \le 1$. So, $B_{r_0}^+$ is convex.

Let us take a convergent sequence $(x_n) \subset B_{r_0}^+ \subset B_{r_0}$ so that $\lim_{n\to\infty} x_n = x$. Since

$$||x_n - x|| = \max_{t \in I} |x_n(t) - x(t)| \to 0 \ (n \to \infty),$$

we get $\lim_{n\to\infty} x_n(t) = x(t)$. Hence, we have $x(t) \geq 0$ for all $t \in I$. Thus, $x \in B_{r_0}^+$ and $B_{r_0}^+$ is closed.

In view of these facts and assumptions (i), (ii), (iii) and (v) it follows that V transforms the set $B_{r_0}^+$ into itself.

Now, we show that V is continuous on the set $B_{r_0}^+$. To do this let us fix $\varepsilon > 0$ and take arbitrarily $x, y \in B_{r_0}^+$ such that $||x - y|| \le \varepsilon$. Then, for $t \in I$ we get the following inequalities:

$$\begin{split} &|(Vx)(t)-(Vy)(t)|\\ &= \left| (Tx)(\beta(t))\int_0^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau - (Ty)(\beta(t))\int_0^{\gamma(t)}v(t,\tau,y(\eta(\tau)))d\tau \right|\\ &\leq \left| (Tx)(\beta(t))\int_0^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau - (Ty)(\beta(t))\int_0^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau \right|\\ &+ \left| (Ty)(\beta(t))\int_0^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau - (Ty)(\beta(t))\int_0^{\gamma(t)}v(t,\tau,y(\eta(\tau)))d\tau \right| \end{split}$$

$$\leq |(Tx)(\beta(t)) - (Ty)(\beta(t))| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau)))| d\tau$$

$$+ |(Ty)(\beta(t))| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx)(\beta(t)) - (Ty)(\beta(t))| \int_{0}^{\gamma(t)} f(|x(\eta(\tau))|) d\tau$$

$$+ |(Ty)(\beta(t))| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx)(\beta(t)) - (Ty)(\beta(t))| \int_{0}^{\gamma(t)} f(||x||) d\tau$$

$$+ |(Ty)(\beta(t))| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx)(\beta(t)) - (Ty)(\beta(t))| \int_{0}^{\gamma(t)} f(r_0) d\tau$$

$$+ |(Ty)(\beta(t))| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)(\beta(t))| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)(\beta(t))| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

$$\leq |(Tx - Ty)| \int_{0}^{\gamma(t)} |v(t,\tau,x(\eta(\tau))) - v(t,\tau,y(\eta(\tau)))| d\tau$$

where $\beta_{r_0}(\varepsilon)$ is defined as

$$\beta_{r_0}(\varepsilon) = \sup\{|v(t,\tau,x) - v(t,\tau,y)| : t, \tau \in I, x, y \in [0,r_0], |x-y| \le \varepsilon\}.$$

From the above estimate we obtain the following inequality:

$$||Vx - Vy|| \le ||Tx - Ty|| M f(r_0) + (c + dr_0^p) M \beta_{r_0}(\varepsilon).$$

From the uniform cotinuity of the function v on the set $I \times I \times [0, r_0]$ we have that $\beta_{r_0}(\varepsilon) \to 0$ as $\varepsilon \to 0$ and from the continuity of T, we have that $||Tx - Ty|| \to 0$ as $\varepsilon \to 0$. The last inequality implies continuity of the operator V on the set $B_{r_0}^+$.

Step 2. In what follows let us take a nonempty set $X \subset Br_0^+$. Further, fix arbitrarily a number $\varepsilon > 0$ and choose $x \in X$ and $t, s \in [0, M]$ such that $|t - s| \le \varepsilon$. Without loss of generality we may assume that $t \le s$. Then, in view of our assumptions we obtain

$$\begin{split} &|(Vx)(s)-(Vx)(t)|\\ &\leq &|a(\alpha(s))-a(\alpha(t))|\\ &+ &|(Tx)(\beta(s))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau-(Tx)(\beta(t))\int_{0}^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau\\ &\leq &w(a,w(\alpha,\varepsilon))+\left|[(Tx)(\beta(s))-(Tx)(\beta(t))]\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau\right|\\ &+ &|(Tx)(\beta(t))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau-(Tx)(\beta(t))\int_{0}^{\gamma(s)}v(t,\tau,x(\eta(\tau)))d\tau\\ &+ &|(Tx)(\beta(t))\int_{0}^{\gamma(s)}v(t,\tau,x(\eta(\tau)))d\tau-(Tx)(\beta(t))\int_{0}^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau\\ &\leq &w(a,w(\alpha,\varepsilon))+|(Tx)(\beta(s))-(Tx)(\beta(t))|\int_{0}^{\gamma(s)}|v(s,\tau,x(\eta(\tau)))|d\tau\\ &+ &|(Tx)(\beta(t))|\int_{0}^{\gamma(s)}|v(s,\tau,x(\eta(\tau)))-v(t,\tau,x(\eta(\tau)))|d\tau\\ &+ &|(Tx)(\beta(t))|\int_{0}^{\gamma(s)}v(t,\tau,x(\eta(\tau)))d\tau\Big|\\ &\leq &w(a,w(\alpha,\varepsilon))+w(Tx,w(\beta,\varepsilon))\int_{0}^{\gamma(s)}f(r_0)d\tau+(c+dr_0^p)\int_{0}^{\gamma(s)}\xi_{r_0}(\varepsilon)d\tau\\ &+ &(c+dr_0^p)f(r_0)|\gamma(s)-\gamma(t)|\\ &\leq &w(a,w(\alpha,\varepsilon))+w(Tx,w(\beta,\varepsilon))Mf(r_0)+(c+dr_0^p)M\xi_{r_0}(\varepsilon)\\ &+ &(c+dr_0^p)f(r_0)|\gamma(s)-\gamma(t)|, \end{split}$$

where $\xi_{r_0}(\varepsilon)$ is defined as

$$\xi_{r_0}(\varepsilon) = \sup\{|v(s,\tau,x)| - v(t,\tau,x)\}|: t, s, \tau \in I, |s-t| < \varepsilon, x \in [0,r_0]\}.$$

Notice, that in view of the uniform continuity of the function v on the set $I \times I \times [0, r_0]$ and from the uniform continuity of the function γ on the interval I, we have $\xi_{r_0}(\varepsilon) \to 0$ as $\varepsilon \to 0$ and $(\gamma(s) - \gamma(t)) \to 0$. Thus, we have the inequality

$$|(Vx)(s) - (Vx)(t)|$$

$$\leq w(a, w(\alpha, \varepsilon)) + w(Tx, w(\beta, \varepsilon))Mf(r_0) + (c + dr_0^p)M\xi_{r_0}(\varepsilon)$$

$$+ (c + dr_0^p)f(r_0)|\gamma(s) - \gamma(t)|.$$

If we take the supremum at this inequality over the t's and s's, we have the inequality

$$w(Vx,\varepsilon) \leq w(a,w(\alpha,\varepsilon)) + w(Tx,w(\beta,\varepsilon))Mf(r_0) + (c+dr_0^p)M\xi_{r_0}(\varepsilon) + (c+dr_0^p)f(r_0)w(\gamma,\varepsilon).$$

If we take the supremum at this inequality over x's, we have the following estimation

$$w(VX,\varepsilon) \leq w(a,w(\alpha,\varepsilon)) + w(TX,w(\beta,\varepsilon))Mf(r_0) + (c+dr_0^p)M\xi_{r_0}(\varepsilon) + (c+dr_0^p)f(r_0)w(\gamma,\varepsilon).$$

For $\varepsilon \to 0$, we have

$$w_0(VX) \le Mf(r_0)w_0(TX).$$
 (3.2)

On the other hand, let us fix arbitrarily $x \in X$ and $t, s \in I$ such that $t \leq s$. Then, we have the following estimate:

$$\begin{split} &|(Vx)(s)-(Vx)(t)|-[(Vx)(s)-(Vx)(t)]\\ &= \left|a(\alpha(s))+(Tx)(\beta(s))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau\right|\\ &- a(\alpha(t))-(Tx)(\beta(t))\int_{0}^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau\\ &- \left[a(\alpha(s))+(Tx)(\beta(s))\int_{0}^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau\right|\\ &- \left[a(\alpha(s))+(Tx)(\beta(t))\int_{0}^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau\right]\\ &\leq \left[|a(\alpha(s))-a(\alpha(t))|-(a(\alpha(s))-a(\alpha(t)))\right]\\ &+ \left|(Tx)(\beta(s))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau-(Tx)(\beta(t))\int_{0}^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau\right|\\ &- \left[(Tx)(\beta(s))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau-(Tx)(\beta(t))\int_{0}^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau\right]\\ &\leq \left|(Tx)(\beta(s))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau-(Tx)(\beta(t))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau\right|\\ &+ \left|(Tx)(\beta(t))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau-(Tx)(\beta(t))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau\right|\\ &- \left[(Tx)(\beta(s))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau-(Tx)(\beta(t))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau\right]\\ &- \left[(Tx)(\beta(t))\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau-(Tx)(\beta(t))\int_{0}^{\gamma(t)}v(t,\tau,x(\eta(\tau)))d\tau\right]\\ &\leq \left[|(Tx)(\beta(s))-(Tx)(\beta(t))|-[(Tx)(\beta(s))-(Tx)(\beta(t))]\right]\int_{0}^{\gamma(s)}v(s,\tau,x(\eta(\tau)))d\tau\\ &\leq \left[|(Tx)(\beta(s))-(Tx)(\beta(t))|-[(Tx)(\beta(s))-(Tx)(\beta(t))]\right]Mf(r_{0}). \end{split}$$

If we take supremum on both sides of this inequality over the $t, s \in I = [0, M]$, we

have the inequality

$$i(Vx) \le Mf(r_0) \sup[|(Tx)(\beta(s)) - (Tx)(\beta(t))| - [(Tx)(\beta(s)) - (Tx)(\beta(t))]]$$

 $< Mf(r_0)i(Tx),$

since the function β is nondecreasing. If we take supremum over the x's, we get the inequality

$$i(VX) \le Mf(r_0)i(TX). \tag{3.3}$$

Finally, from the inequalities (3.2) and (3.3), we obtain

$$\mu(VX) < M f(r_0)\mu(TX) < M f(r_0)\theta\mu(X).$$

From the assumption (viii) which is

$$M f(r_0)\theta < 1$$

and by applying Theorem 2.1, V has a fixed point in the set $B_{r_0}^+$.

Let us remember that from Remark 1, the set FixV of fixed points of V belonging to C(I) is a member of $\ker \mu$. i.e. $\mu(FixV) = 0$ and this implies i(FixV) = 0. Therefore the solutions are nondecreasing on I. Thus the proof is completed.

Corollary 3.1. We assume that the function a is positive, the function f is continuous and the assumptions (i)-(vi) and (viii) are provided in the Theorem 3.1. Let us take the inequality

$$a(\|\alpha\|) + (c+d)Mf(1) < 1$$

instead of (vii). So, the function h defined as

$$h: [0,1] \to \mathbb{R}, h(r) = a(\|\alpha\|) + (c + dr^p)Mf(r) - r$$

is continuous and

$$h(0) = a(\|\alpha\|) + cMf(0) > 0$$

and

$$h(1) = a(\|\alpha\|) + (c+d)Mf(1) - 1 < 0.$$

Thus, there exists at least one a number $r_0 \in (0,1)$ such that $h(r_0) = 0$. Consequently, all of the assumptions of the Theorem 3.1 hold and the equation (3.1) has at least one solution $x = x(t) \in B_{r_0}^+$.

Example 3.1. Let us consider the equation

$$x(t) = \frac{t^2}{5} + \frac{1 + x^2(t)}{2} \int_0^{t^2} \frac{\sin t + e^{x(\tau^2)}}{8 + \tau} d\tau, \quad t \in I = [0, 1],$$
 (3.4)

where $\alpha(t)=t^2,\ \beta(t)=t,\ \gamma(t)=t^2,\ \eta(\tau)=\tau^2,\ a(s)=\frac{s}{5},\ a(\alpha(t))=\frac{t^2}{5}$ and the function a is nondecreasing and positive and $\|\alpha\|=1,\ a(\|\alpha\|)=\frac{1}{5}.$

$$v(t,\tau,x) = \frac{\sin t + e^x}{8+\tau}$$

and

$$(Tx)(t) = \frac{1+x^2(t)}{2}.$$

We have the following estimate

$$|v(t,\tau,x)| = \left|\frac{\sin t + e^x}{8+\tau}\right| \le \frac{1+e^x}{8} \le \frac{1+e^{|x|}}{8} = f(|x|)$$

for all $t, \tau \in I$ and $x \in \mathbb{R}$. From the above equation we see that $f(x) = \frac{1+e^x}{8}$. Let us see that the operator T is continuous. Let x_0 be arbitrarily element chosen from C(I). For $||x - x_0|| < \delta$, we have the following estimate:

$$||Tx - Tx_0|| = \max_{t \in I} \left| \frac{1 + x^2(t)}{2} - \frac{1 + x_0^2(t)}{2} \right|$$

$$= \frac{1}{2} \max_{t \in I} |x^2(t) - x_0^2(t)|$$

$$= \frac{1}{2} \max_{t \in I} [|x(t) - x_0(t)||x(t) + x_0(t)|]$$

and

$$|x(t)| = |x(t) - x_0(t) + x_0(t)| \le |x(t) - x_0(t)| + |x_0(t)| \le ||x - x_0|| + ||x_0||$$

such that,

$$|x(t)| \le \delta + ||x_0||. \tag{3.5}$$

From the inequality (3.5), we obtain

$$|x(t) + x_0(t)| \le |x(t)| + ||x_0|| \le \delta + 2||x_0||.$$

Thus, we obtain

$$||Tx - Tx_0|| = \frac{1}{2} \max_{t \in I} [|x(t) - x_0(t)||x(t) + x_0(t)|]$$

$$\leq \frac{1}{2} (\delta + 2||x_0||) \max_{t \in I} |x(t) - x_0(t)|$$

$$= \frac{1}{2} (\delta + 2||x_0||) ||x - x_0||.$$

Taking

$$\frac{1}{2}(\delta + 2||x_0||)\delta = \varepsilon$$

we get

$$\delta^{2} + 2||x_{0}||\delta - 2\varepsilon = 0 \quad \Rightarrow \quad (\delta + ||x_{0}||)^{2} - ||x_{0}||^{2} - 2\varepsilon = 0$$

$$\Rightarrow \quad (\delta + ||x_{0}||)^{2} = ||x_{0}||^{2} + 2\varepsilon$$

$$\Rightarrow \quad \delta + ||x_{0}|| = \sqrt{||x_{0}||^{2} + 2\varepsilon}.$$

If δ is chosen as

$$\delta = \sqrt{\|x_0\|^2 + 2\varepsilon} - \|x_0\| > 0,$$

it is seen that the operator T is continuous at the point x_0 . Since x_0 is an arbitrarily element chosen from C(I), T is continuous on C(I). On the other hand, for each $x \in C(I)$ and each $t \in I$ the inequality

$$|(Tx)(t)| \le c + d||x||^p, \quad (p > 0)$$

is provided. Namely,

$$\left|\frac{1+x^2(t)}{2}\right| \leq \frac{1}{2} + \frac{1}{2}|x^2(t)| = \frac{1}{2} + \frac{1}{2}|x(t)|^2 \leq \frac{1}{2} + \frac{1}{2}||x||^2, \quad c = \frac{1}{2}, \quad d = \frac{1}{2}, \quad p = 2.$$

There exists r_0 positive solution that provides the inequality

$$a(\|\alpha\|) + (c + dr^p)Mf(r) < r$$

where $\|\alpha\| = 1$, $a(\|\alpha\|) = \frac{1}{5}$, M = 1. Any number r_0 which provides the inequality

$$0,375018 \le r_0 \le 1,65394$$

is a solution of the following inequality:

$$\frac{1}{5} + \frac{1}{8}(1 + e^r)\left(\frac{1}{2} + \frac{1}{2}r^2\right) \le r.$$

For example $r_0 = 1$ is a solution of this inequality.

Let $X \neq \emptyset$, $X \subset B_{r_0}^+$, $x \in B_{r_0}^+$ and $t_1, t_2 \in I$. We have the following estimate:

$$\begin{aligned} |(Tx(t_2)) - (Tx(t_1))| &= \left| \frac{1 + x^2(t_2)}{2} - \frac{1 + x^2(t_1)}{2} \right| \\ &\leq \frac{1}{2} |x(t_2) + x(t_1)| |x(t_2) - x(t_1)| \\ &\leq \frac{1}{2} (|x(t_2)| + |x(t_1)|) |x(t_2) - x(t_1)| \\ &\leq \frac{1}{2} (||x|| + ||x||) |x(t_2) - x(t_1)| \\ &\leq \frac{1}{2} (2r_0) |x(t_2) - x(t_1)| \end{aligned}$$

$$\sup_{t_1, t_2 \in I} |(Tx)(t_2)) - (Tx)(t_1)| \le \sup_{t_1, t_2 \in I} |x(t_2) - x(t_1)|$$

i.e.

$$w(Tx,\varepsilon) \le w(x,\varepsilon).$$

Thus, we have the following inequalities:

$$\sup_{x \in X} w(Tx, \varepsilon) \le \sup_{x \in X} w(x, \varepsilon),$$

$$w(TX, \varepsilon) \le w(X, \varepsilon),$$

$$\lim_{\varepsilon \to 0} w(TX, \varepsilon) \le \lim_{\varepsilon \to 0} w(X, \varepsilon),$$

$$w_0(TX) \le w_0(X). \tag{3.6}$$

Let $X \neq \emptyset$, $X \subset B_{r_0}^+$, $x \in B_{r_0}^+$, $t_1 \leq t_2$ and $t_1, t_2 \in I$. In this case we have the following estimate:

$$\begin{split} &|(Tx)(t_2)-(Tx)(t_1)|-[(Tx)(t_2)-(Tx)(t_1)]\\ &= \left|\frac{1+x^2(t_2)-1-x^2(t_1)}{2}\right|-\left[\frac{1+x^2(t_2)-1-x^2(t_1)}{2}\right]\\ &\leq \left|\frac{1}{2}|x(t_2)-x(t_1)||x(t_2)+x(t_1)|-\frac{1}{2}[(x(t_2)-x(t_1))(x(t_2)+x(t_1))]\\ &= \left|\frac{1}{2}\left(|x(t_2)|+|x(t_1)|\right)[|x(t_2)-x(t_1)|-(x(t_2)-x(t_1))]\\ &\leq \left|\frac{1}{2}(||x||+||x||)[|x(t_2)-x(t_1)|-(x(t_2)-x(t_1))]\\ &\leq \left|\frac{1}{2}2r_0[|x(t_2)-x(t_1)|-(x(t_2)-x(t_1))]\\ &= |x(t_2)-x(t_1)|-[x(t_2)-x(t_1)]. \end{split}$$

Hence,

$$\sup_{t_1,t_2\in I}[|(Tx)(t_2)-(Tx)(t_1)|-[(Tx)(t_2)-(Tx)(t_1)]]$$

$$\leq \sup_{t_1,t_2\in I}[|x(t_2)-x(t_1)|-[x(t_2)-x(t_1)]],$$

$$i(Tx) \le i(x)$$

in view of the inequalities,

$$\sup_{x \in X} i(Tx) \le \sup_{x \in X} i(x)$$

and so, we obtain

$$i(TX) \le i(X). \tag{3.7}$$

From the inequalities (3.6) and (3.7), we get

$$\mu(TX) \le \mu(X),$$

where θ can be taken as $\theta = 1$. In this case the inequality $Mf(r_0)\theta < 1$ holds. Because, for $\theta = 1$, $r_0 = 1$, M = 1 and $f(1) = \frac{1+e}{8}$, the inequality

$$Mf(1)\theta = \frac{1+e}{8} < 1$$

holds. Since all of our assumptions are satisfied, this equation has a nondecreasing solution on B_{ro}^+ .

Remark 2. In the Example 3.1, since

$$|(Tx)(t)| \le \frac{1}{2} + \frac{1}{2}||x||^2$$

for all $x \in C(I)$ and $t \in I$, the condition (v)

$$|(Tx)(t)| \le c + d||x||$$

in [3] does not hold. Hence, the result given in [3] is not applicable to the integral equation (3.4) in the Example 3.1.

Example 3.2. Let us consider the equation

$$x(t) = \frac{\sin(t - 1 + \frac{\pi}{2})}{5} + \frac{1 + x^3(t)}{7} \int_0^{t^3} \frac{\tan t + e^{x(\tau^2)}}{2 + \tau} d\tau, \ t \in I = [0, 1],$$
 (3.8)

where $\alpha(t)=t,\ \beta(t)=t,\ \gamma(t)=t^3,\ \eta(\tau)=\tau^2,$ the function $a(t)=\frac{\sin(t-1+\frac{\pi}{2})}{5}$ is nondecreasing and positive and $a(\|\alpha\|)=\frac{1}{5}.$ We have the following estimate:

$$|v(t,\tau,x)| = \left|\frac{\tan t + e^x}{2+\tau}\right| \le \frac{\sqrt{3} + e^x}{2} \le \frac{\sqrt{3} + e^{|x|}}{2} = f(|x|)$$

for all $t, \tau \in I$ and $x \in \mathbb{R}$. From the above equation, we see that $f(x) = \frac{\sqrt{3} + e^x}{2}$ and $(Tx)(t) = \frac{1 + x^3(t)}{7}$. It is obvious that $T: C(I) \to C(I)$. Let us see that the operator T is continuous. Let x_0 be an arbitrarily element chosen from C(I). When $||x - x_0|| < \delta$ we have the following estimate:

$$\begin{split} \|Tx - Tx_0\| &= \max_{t \in I} \left| \frac{1 + x^3(t)}{7} - \frac{1 + x_0^3(t)}{7} \right| \\ &= \frac{1}{7} \max_{t \in I} |x^3(t) - x_0^3(t)| \\ &= \frac{1}{7} \max_{t \in I} [|x(t) - x_0(t)||x^2(t) + x(t)x_0(t) + x_0^2(t)|] \end{split}$$

$$|x^{2}(t) + x(t)x_{0}(t) + x_{0}^{2}(t)| = |(x(t) - x_{0}(t))^{2} + 3x(t)x_{0}(t)|$$

$$\leq |(x(t) - x_{0}(t))|^{2} + 3|x(t)x_{0}(t)|$$

$$< \delta^{2} + 3|x(t) - x_{0}(t) + x_{0}(t)||x_{0}(t)|$$

$$\leq \delta^{2} + 3\delta||x_{0}|| + 3||x_{0}||^{2}.$$

From the above inequalities, we obtain

$$||Tx - Tx_0|| = \frac{1}{7} \max_{t \in I} [|x(t) - x_0(t)||x^2(t) + x(t)x_0(t) + x_0^2(t)|]$$

$$< \frac{1}{7} (\delta^3 + 3\delta^2 ||x_0|| + 3\delta ||x_0||^2)$$

$$= \frac{1}{7} ((\delta + ||x_0||)^3 - ||x_0||^3)$$

$$= \frac{1}{7} (\delta + ||x_0||)^3 - \frac{1}{7} ||x_0||^3 = \varepsilon$$

$$\Rightarrow \frac{1}{7} (\delta + ||x_0||)^3 = \varepsilon + \frac{1}{7} ||x_0||^3$$

$$\Rightarrow \delta + ||x_0|| = (7\varepsilon + ||x_0||^3)^{\frac{1}{3}}$$

$$\Rightarrow \delta = (7\varepsilon + ||x_0||^3)^{\frac{1}{3}} - ||x_0|| > 0.$$

If δ is chosen as $\delta = (7\varepsilon + ||x_0||^3)^{\frac{1}{3}} - ||x_0|| > 0$, it is seen that the operator T is continuous at the point x_0 . Since x_0 is an arbitrarily element chosen from C(I), T is continuous on C(I). Since

$$|(Tx)(t)| = \left| \frac{1+x^3(t)}{7} \right| \le \frac{1}{7} + \frac{1}{7}|x^3(t)| = \frac{1}{7} + \frac{1}{7}|x(t)|^3 \le \frac{1}{7} + \frac{1}{7}||x||^3,$$

$$c = \frac{1}{7}, \quad d = \frac{1}{7}, \quad p = 3,$$

the inequality

$$|(Tx)(t)| < c + d||x||^p$$
, $(p > 0)$

holds. There exists positive solution r_0 that provides the inequality

$$a(\|\alpha\|) + (c + dr^p)Mf(r) \le r,$$

where $\|\alpha\| = 1$, $a(\|\alpha\|) = \frac{1}{5}$, M = 1.

Any number r_0 providing the inequality

$$0,386812 \le r_0 \le 1,32116$$

is a solution of the following inequality:

$$\left(\frac{1}{2}(\sqrt{3}+e^r)\right)\left(\frac{1}{7}+\frac{1}{7}r^3\right)+\frac{1}{5} \le r.$$

For example $r_0 = 1$ is a solution of this inequality.

For any $t_1, t_2 \in [0, 1]$ such that $|t_2 - t_1| \le \varepsilon$, $\emptyset \ne X \subset B_{r_0}^+ = B_1^+$ and $x \in X$, we obtain

$$|(Tx)(t_2) - (Tx)(t_1)| = \left| \frac{1 + x^3(t_2)}{7} - \frac{1 + x^3(t_1)}{7} \right|$$

$$= \frac{1}{7} |x^3(t_2) - x^3(t_1)|$$

$$\leq \frac{1}{7} |x(t_2) - x(t_1)| |x^2(t_2) + x(t_2)x(t_1) + x^2(t_1)|$$

$$\leq \frac{1}{7} |x(t_2) - x(t_1)| (|x^2(t_2)| + |x(t_2)x(t_1)| + |x^2(t_1)|)$$

$$\leq \frac{1}{7} |x(t_2) - x(t_1)| 3||x||^2$$

$$\leq \frac{3}{7} |x(t_2) - x(t_1)|.$$

If we take the supremum on both sides of inequality over $t_1, t_2 \in I$ such that $|t_2 - t_1| \le \varepsilon$ and $x \in X$, we get

$$w(Tx,\varepsilon) \le \frac{3}{7}w(x,\varepsilon).$$

If we take the supremum at this inequality over $x \in X$, we get

$$w(TX,\varepsilon) \le \frac{3}{7}w(X,\varepsilon),$$

where, for $\varepsilon \to 0$, we obtain

$$w_0(TX) \le \frac{3}{7}w_0(X). \tag{3.9}$$

For any $t_1, t_2 \in [0, 1]$ such that $t_1 \leq t_2, \emptyset \neq X \subset B_{r_0}^+ = B_1^+$ and $x \in X$, we get

$$\begin{aligned} &|(Tx)(t_2) - (Tx)(t_1)| - [(Tx)(t_2) - (Tx)(t_1)] \\ &= \left| \frac{1 + x^3(t_2)}{7} - \frac{1 + x^3(t_1)}{7} \right| - \left[\frac{1 + x^3(t_2)}{7} - \frac{1 + x^3(t_1)}{7} \right] \\ &= \left| \frac{1}{7} \left| x^3(t_2) - x^3(t_1) \right| - \frac{1}{7} [x^3(t_2) - x^3(t_1)] \\ &= \left| \frac{1}{7} \left| (x(t_2) - x(t_1))(x^2(t_2) + x(t_2)x(t_1) + x^2(t_1)) \right| \\ &- \left| \frac{1}{7} (x(t_2) - x(t_1))(x^2(t_2) + x(t_2)x(t_1) + x^2(t_1)) \right| \\ &= \left| \frac{1}{7} (x^2(t_2) + x(t_2)x(t_1) + x^2(t_1)) [|x(t_2) - x(t_1)| - (x(t_2) - x(t_1))] \right| \\ &\leq \left| \frac{3}{7} \|x\|^2 [|x(t_2) - x(t_1)| - (x(t_2) - x(t_1))] \right| \\ &\leq \left| \frac{3}{7} [|x(t_2) - x(t_1)| - (x(t_2) - x(t_1))] \right|. \end{aligned}$$

If we take the supremum at this inequality over $t_1, t_2 \in [0, 1]$ such that $t_1 \leq t_2$, we get

$$i(Tx) \le \frac{3}{7}i(x).$$

If we take the supremum at this inequality over $x \in X$, we get

$$i(TX) \le \frac{3}{7}i(X). \tag{3.10}$$

From the inequalities (3.9) and (3.10) we get

$$\mu(TX) \le \frac{3}{7}\mu(X).$$

Then, θ can be taken as $\theta = \frac{3}{7}$. For r = 1, $\theta = \frac{3}{7}$ and M = 1, we get

$$Mf(1)\frac{3}{7} < 1.$$

Thus, all of our assumptions provide and hence this equation has a nondecreasing solution on $B_{r_0}^+$.

Remark 3. In the Example 3.2, since

$$|(Tx)(t)| \le \frac{1}{7} + \frac{1}{7}||x||^3$$

for all $x \in C(I)$ and $t \in I$, the condition (v)

$$|(Tx)(t)| \le c + d||x||$$

in [3] does not hold. Hence, the result given in [3] is not applicable to the integral equation (3.8) presented in the Example 3.2.

Acknowledgments

The authors would like to thanks the referees for their suggestions and corrections.

References

- [1] R.P. Agarwal, D. O'Regan, P.J.Y. Wong, *Positive Solutions of Differential and Integral Equations*, Kluwer Academic Publishers, Dordrecht, 1999.
- [2] I.K. Argyros, Quadratic equations applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc. 32 (1985) 275–292.
- [3] J. Banaś, J. Caballero, J. Rocha, K. Sadarangani, Monotonic solutions of a class of quadratic integral equations of Volterra type, Comput. Math. Applic. 49 (2005) 943–952.

- [4] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980.
- [5] J. Banaś, A. Martinon, On monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Applic. 47 (2004) 271–279.
- [6] J. Banaś, L. Olszowy, Measure of noncompactness related to monotoncity, Comment. Math. 41 (2001) 13–23.
- [7] J. Banaś, K. Sadarangani, Solvabolity of Volterra-Stieltjes operator-integral equations and their applications, Comput. Math. Applic. 41 (12) (2001) 1535–1544.
- [8] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955) 84–92.
- [9] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
- [10] S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Analysis 34 (1989) 261–266.
- [11] D. O'Regan, M.M. Meehan, Existence Theory for Nonlinear Integral and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1998.

DOI: 10.7862/rf.2019.8

Osman Karakurt

email: osman-44@yandex.com ORCID: 0000-0002-4669-8470 Yeşilyurt G. N. Mesleki ve Teknik Anadolu Lisesi Malatya TURKEY

Ömer Faruk Temizer*

email: omer.temizer@inonu.edu.tr ORCID: 0000-0002-3843-5945 Eğitim Fakültesi, A-Blok İnönü Üniversitesi 44280-Malatya TURKEY *Corresponding author

Received 10.04.2019

Accepted 12.06.2019