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1. Introduction

The theory of integral operators and integral equations is an important part of non-
linear analysis. This theory is frequently applicable in other branches of mathematics
and mathematical physics, engineering, economics, biology as well in describing prob-
lems connected with real world [1, 2, 7, 9, 10, 11].

The aim of this paper is to investigate the existence of nondecreasing solutions of
a class of a quadratic integral equations of Volterra type. We will look for solutions
of those equations in the Banach space of real functions being defined and continuous
on a bounded and closed interval. The main tool used in our investigation is the
technique of measure of noncompactness which is frequently used in several branches
of nonlinear analysis [4, 7, 5, 9].

We will apply the measure of noncompactness defined in [6] to proving the solva-
bility of the considered equations in the class of monotonic functions.

The results of this paper generalize the results obtained earlier in the paper [3].
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2. Notation and auxiliary facts

Now, we are going to recall the basic results which are needed further on.
Assume that E is a real Banach space with the norm ‖.‖ and the zero element 0.

Denote by B(x, r) the closed ball centered at x and with radius r and by Br the ball
B(0, r). If X is a nonempty subset of E we denote by X, ConvX the closure and the
convex closure of X, respectively.

With the symbols λX and X + Y we denote the algebraic operations on the sets.
Finally, let us denote by ME the family of all nonempty and bounded subsets of E
and by NE its subfamily consisting of all relatively compact sets.

Definition 2.1 (See [4]). A function µ : ME → [0,∞) is said to be a measure of
noncompactness in the space E if it is satisfies the following conditions

(1) The family kerµ = {X ∈ME : µ(X) = 0} 6= ∅ and kerµ ⊂ NE,

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ),

(3) µ(X) = µ(ConvX) = µ(X),

(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ), forλ ∈ [0, 1],

(5) If {Xn}n is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for
n = 1, 2, . . . and if limn→∞ µ(Xn) = 0, then the setX∞ =

⋂∞
n=1Xn is nonempty.

The family kerµ described above is called the kernel of the measure of noncompact-
ness µ. Further facts concerning measures of noncompactness and their properties
may be found in [4].

Now, let us suppose that O̧ is a nonempty subset of the Banach space E and the
operator F : O̧ → E is continuous and transforms bounded sets onto bounded ones.
We say that F satisfies the Darbo condition (with a constant k ≥ 0) with respect
to a measure of noncompactness µ if for any bounded subset X of O̧ the following
inequality holds:

µ(FX) ≤ kµ(X).

If F satisfies the Darbo condition with k < 1 then it is said to be a contraction with
respect to µ, [8]. For our further purposes we will only need the following fixed point
theorem.

Theorem 2.1. Let O̧ be a nonempty, bounded, closed and convex subset of the Banach
space E and µ be a measure of noncompactness in E. Let F : O̧→ O̧ be a continuous
transformation such that µ(FX) ≤ kµ(X) for any nonempty subset X of O̧, where
k ∈ [0, 1) is a constant. Then, F has a fixed point in the set O̧, [3].

Remark 1. Under assumptions of the above theorem it can be shown that, the set
FixF of fixed points of F belonging to O̧ is a member of kerµ. This observation
allows us to characterize solutions of considered equations, [3].
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In what follows, we will work in the classical Banach space C[0,M ] consisting of
all real functions defined and continuous on the interval [0,M]. For convenience, we
write I = [0,M ] and C(I) = C[0,M ]. The space C(I) is furnished by the standard
norm ‖x‖ = max{|x(t)| : t ∈ I}.

Now, we recall the definition of a measure of noncompactness in C(I) which will
be used in the sequel. That measure was introduced and studied in the paper [6].

To do this let us fix a nonempty and bounded subset X of C(I). For ε > 0 and
x ∈ X denote by w(x, ε) the modulus of continuity of x defined by

w(x, ε) = sup{|x(t)− x(s)| : t, s ∈ I, |t− s| ≤ ε}.

Further, let us put

w(X, ε) = sup{w(x, ε) : x ∈ X},

w0(X) = lim
ε→0

w(X, ε).

Next, let us define the following quantities

i(x) = sup{|x(s)− x(t)| − [x(s)− x(t)] : t, s ∈ I, t ≤ s},

i(X) = sup{i(x) : x ∈ X}.

Observe that, i(X) = 0 if and only if all functions belonging to X are nondecreasing
on I. Finally, let us put

µ(X) = w0(X) + i(X).

It can be shown that, the function µ is a measure of noncompactness in the space
C(I) (see [6]). Moreover, the kernel kerµ consist of all sets X belonging to MC(I)

such that all functions from X are equicontinuous and nondecreasing on the interval
I.

3. Main result

In this section, we apply the above defined measure of noncompactness µ to the study
of monotonic solutions of our integral equation.

We consider the following nonlinear integral equation of Volterra type

x(t) = a(α(t)) + (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ, t ∈ I = [0,M ]. (3.1)

The functions a(α(t)), v(t, τ, x(η(τ))) and (Tx)(β(t)) appearing in this equation are
given while x = x(t) is an unknown function. This equation will be examined under
the following assumptions:
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(i) α, β, γ, η: I → I are continuous functions and α, β, γ are nondecreasing on I.

(ii) The function a ∈ C(I) is nondecreasing and nonnegative on the interval I.

(iii) v : I×I×R→ R is a continuous function such that v : I×I×R+ → R+ and for
arbitrarily fixed τ ∈ I and x ∈ R+ the function t → v(t, τ, x) is nondecreasing
on I.

(iv) There exists a nondecreasing function f : R+ → R+ such that the inequality
|v(t, τ, x)| ≤ f(|x|) holds for t, τ ∈ I and x ∈ R.

(v) The operator T : C(I) → C(I) is continuous and T is a positive operator, i.e.
Tx ≥ 0 if x ≥ 0.

(vi) There exist nonnegative constants c, d and p > 0 such that |(Tx)(t)| ≤ c+d‖x‖p
for each x ∈ C(I) and all t ∈ I.

(vii) The inequality a(‖α‖) + (c+ drp)Mf(r) ≤ r has a positive solution r0.

(viii) The operator T in B+
r0 = {x ∈ Br0 : x(t) ≥ 0, t ∈ I} satisfies the inequality

µ(TX) ≤ θµ(X) for the measure of noncompactness µ with a constant θ such
that Mf(r0)θ < 1, where θ ∈ [0, 1).

Then, we have the following theorem:

Theorem 3.1. Under the assumptions (i)-(viii) the equation (3.1) has at least one
solution x = x(t) which belongs to the space C(I) and is nondecreasing on the inter-
val I.

Proof. Let us consider the operator V defined on the space C(I) in the following
way:

(V x)(t) = a(α(t)) + (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ.

The proof will now proceed in two steps: firstly V is continuous and secondly V is
contraction transformation on B+

r0 ⊂ C(I).
Step 1. In view of the assumptions (i), (ii), (iii) and (v) it follows that, the

function V x is continuous on I for any function x ∈ C(I), i.e., V transforms the space
C(I) into itself. Moreover, keeping in mind the assumptions (iv) and (vi) we get

|(V x)(t)| ≤ |a(α(t))|+ |(Tx)(β(t))|

∣∣∣∣∣
∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

∣∣∣∣∣
≤ a(‖α‖) + (c+ d‖x‖p)

∫ γ(t)

0

f(|x(η(τ))|)dτ

≤ a(‖α‖) + (c+ d‖x‖p)
∫ γ(t)

0

f(‖x‖)dτ

≤ a(‖α‖) + (c+ d‖x‖p)Mf(‖x‖).
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Hence, we obtain the inequality

‖V x‖ ≤ a(‖α‖) + (c+ d‖x‖p)Mf(‖x‖).

For r0 ≥ ‖x‖ such that provide assumption (vii), we get ‖V x‖ ≤ r0. This shows that
V transforms the ball Br0 into itself i.e., V : Br0 → Br0 .

Let us consider the operator V on the subset B+
r0 of the ball Br0 defined by

B+
r0 = {x ∈ Br0 : x(t) ≥ 0, t ∈ I}.

Since the function x defined as x(t) = r0 for all t ∈ I is a member of the set B+
r0 , the

set B+
r0 is nonempty. Since Br0 is bounded, B+

r0 is bounded. The inequalities

λx(t) + (1− λ)y(t) ≥ 0

and

‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖ ≤ λr0 + (1− λ)r0 = r0

hold for all x, y ∈ B+
r0 , t ∈ I and λ such that 0 ≤ λ ≤ 1. So, B+

r0 is convex.

Let us take a convergent sequence (xn) ⊂ B+
r0 ⊂ Br0 so that limn→∞ xn = x.

Since

‖xn − x‖ = max
t∈I
|xn(t)− x(t)| → 0 (n→∞),

we get limn→∞ xn(t) = x(t). Hence, we have x(t) ≥ 0 for all t ∈ I. Thus, x ∈ B+
r0

and B+
r0 is closed.

In view of these facts and assumptions (i), (ii), (iii) and (v) it follows that V
transforms the set B+

r0 into itself.

Now, we show that V is continuous on the set B+
r0 . To do this let us fix ε > 0 and

take arbitrarily x, y ∈ B+
r0 such that ‖x− y‖ ≤ ε. Then, for t ∈ I we get the following

inequalities:

|(V x)(t)− (V y)(t)|

=

∣∣∣∣∣(Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ − (Ty)(β(t))

∫ γ(t)

0

v(t, τ, y(η(τ)))dτ

∣∣∣∣∣
≤

∣∣∣∣∣(Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ − (Ty)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

∣∣∣∣∣
+

∣∣∣∣∣(Ty)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ − (Ty)(β(t))

∫ γ(t)

0

v(t, τ, y(η(τ)))dτ

∣∣∣∣∣
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≤ |(Tx)(β(t))− (Ty)(β(t))|
∫ γ(t)

0

|v(t, τ, x(η(τ)))|dτ

+ |(Ty)(β(t))|
∫ γ(t)

0

|v(t, τ, x(η(τ)))− v(t, τ, y(η(τ)))| dτ

≤ |(Tx)(β(t))− (Ty)(β(t))|
∫ γ(t)

0

f(|x(η(τ))|)dτ

+ |(Ty)(β(t))|
∫ γ(t)

0

|v(t, τ, x(η(τ)))− v(t, τ, y(η(τ)))| dτ

≤ |(Tx)(β(t))− (Ty)(β(t))|
∫ γ(t)

0

f(‖x‖)dτ

+ |(Ty)(β(t))|
∫ γ(t)

0

|v(t, τ, x(η(τ)))− v(t, τ, y(η(τ)))| dτ

≤ |(Tx)(β(t))− (Ty)(β(t))|
∫ γ(t)

0

f(r0)dτ

+ |(Ty)(β(t))|
∫ γ(t)

0

|v(t, τ, x(η(τ)))− v(t, τ, y(η(τ)))| dτ

≤ |(Tx− Ty)(β(t))|
∫ γ(t)

0

f(r0)dτ

+ (c+ d‖y‖p)
∫ γ(t)

0

|v(t, τ, x(η(τ)))− v(t, τ, y(η(τ)))| dτ

≤ ‖Tx− Ty‖
∫ γ(t)

0

f(r0)dτ + (c+ drp0)

∫ γ(t)

0

βr0(ε)dτ

≤ ‖Tx− Ty‖Mf(r0) + (c+ drp0)βr0(ε)M,

where βr0(ε) is defined as

βr0(ε) = sup{|v(t, τ, x)− v(t, τ, y)| : t, τ ∈ I, x, y ∈ [0, r0], |x− y| ≤ ε}.

From the above estimate we obtain the following inequality:

‖V x− V y‖ ≤ ‖Tx− Ty‖Mf(r0) + (c+ drp0)Mβr0(ε).

From the uniform cotinuity of the function v on the set I × I × [0, r0] we have that
βr0(ε) → 0 as ε → 0 and from the continuity of T , we have that ‖Tx − Ty‖ → 0 as
ε→ 0. The last inequality implies continuity of the operator V on the set B+

r0 .

Step 2. In what follows let us take a nonempty set X ⊂ Br+0 . Further, fix
arbitrarily a number ε > 0 and choose x ∈ X and t, s ∈ [0,M ] such that |t− s| ≤ ε.
Without loss of generality we may assume that t ≤ s. Then, in view of our assump-
tions we obtain
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|(V x)(s)− (V x)(t)|
≤ |a(α(s))− a(α(t))|

+

∣∣∣∣∣(Tx)(β(s))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ − (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

∣∣∣∣∣
≤ w(a,w(α, ε)) +

∣∣∣∣∣[(Tx)(β(s))− (Tx)(β(t))]

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ

∣∣∣∣∣
+

∣∣∣∣∣(Tx)(β(t))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ − (Tx)(β(t))

∫ γ(s)

0

v(t, τ, x(η(τ)))dτ

∣∣∣∣∣
+

∣∣∣∣∣(Tx)(β(t))

∫ γ(s)

0

v(t, τ, x(η(τ)))dτ − (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

∣∣∣∣∣
≤ w(a,w(α, ε)) + |(Tx)(β(s))− (Tx)(β(t))|

∫ γ(s)

0

|v(s, τ, x(η(τ)))|dτ

+ |(Tx)(β(t))|
∫ γ(s)

0

|v(s, τ, x(η(τ)))− v(t, τ, x(η(τ)))|dτ

+ |(Tx)(β(t)|

∣∣∣∣∣
∫ γ(s)

γ(t)

v(t, τ, x(η(τ)))dτ

∣∣∣∣∣
≤ w(a,w(α, ε)) + w(Tx,w(β, ε))

∫ γ(s)

0

f(r0)dτ + (c+ drp0)

∫ γ(s)

0

ξr0(ε)dτ

+ (c+ drp0)f(r0)|γ(s)− γ(t)|
≤ w(a,w(α, ε)) + w(Tx,w(β, ε))Mf(r0) + (c+ drp0)Mξr0(ε)

+ (c+ drp0)f(r0)|γ(s)− γ(t)|,

where ξr0(ε) is defined as

ξr0(ε) = sup{|v(s, τ, x))− v(t, τ, x))| : t, s, τ ∈ I, |s− t| ≤ ε, x ∈ [0, r0]}.

Notice, that in view of the uniform continuity of the function v on the set I×I×[0, r0]
and from the uniform continuity of the function γ on the interval I, we have ξr0(ε)→ 0
as ε→ 0 and (γ(s)− γ(t))→ 0. Thus, we have the inequality

|(V x)(s)− (V x)(t)|
≤ w(a,w(α, ε)) + w(Tx,w(β, ε))Mf(r0) + (c+ drp0)Mξr0(ε)

+ (c+ drp0)f(r0)|γ(s)− γ(t)|.

If we take the supremum at this inequality over the t’s and s’s, we have the inequality

w(V x, ε) ≤ w(a,w(α, ε)) + w(Tx,w(β, ε))Mf(r0) + (c+ drp0)Mξr0(ε)

+ (c+ drp0)f(r0)w(γ, ε).
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If we take the supremum at this inequality over x’s, we have the following estimation

w(V X, ε) ≤ w(a,w(α, ε)) + w(TX,w(β, ε))Mf(r0) + (c+ drp0)Mξr0(ε)

+ (c+ drp0)f(r0)w(γ, ε).

For ε→ 0, we have

w0(V X) ≤Mf(r0)w0(TX). (3.2)

On the other hand, let us fix arbitrarily x ∈ X and t, s ∈ I such that t ≤ s. Then,
we have the following estimate:

|(V x)(s)− (V x)(t)| − [(V x)(s)− (V x)(t)]

=

∣∣∣∣a(α(s)) + (Tx)(β(s))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ

− a(α(t))− (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

∣∣∣∣
−

[
a(α(s)) + (Tx)(β(s))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ

− a(α(t))− (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

]
≤ [|a(α(s))− a(α(t))| − (a(α(s))− a(α(t)))]

+

∣∣∣∣(Tx)(β(s))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ − (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

∣∣∣∣
−

[
(Tx)(β(s))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ − (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

]
≤

∣∣∣∣(Tx)(β(s))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ − (Tx)(β(t))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ

∣∣∣∣
+

∣∣∣∣(Tx)(β(t))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ − (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

∣∣∣∣
−

[
(Tx)(β(s))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ − (Tx)(β(t))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ

]
−

[
(Tx)(β(t))

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ − (Tx)(β(t))

∫ γ(t)

0

v(t, τ, x(η(τ)))dτ

]

≤ [|(Tx)(β(s))− (Tx)(β(t))| − [(Tx)(β(s))− (Tx)(β(t))]]

∫ γ(s)

0

v(s, τ, x(η(τ)))dτ

≤ [|(Tx)(β(s))− (Tx)(β(t))| − [(Tx)(β(s))− (Tx)(β(t))]]Mf(r0).

If we take supremum on both sides of this inequality over the t, s ∈ I = [0,M ], we
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have the inequality

i(V x) ≤ Mf(r0) sup[|(Tx)(β(s))− (Tx)(β(t))| − [(Tx)(β(s))− (Tx)(β(t))]]

≤ Mf(r0)i(Tx),

since the function β is nondecreasing. If we take supremum over the x’s, we get the
inequality

i(V X) ≤Mf(r0)i(TX). (3.3)

Finally, from the inequalities (3.2) and (3.3), we obtain

µ(V X) ≤Mf(r0)µ(TX) ≤Mf(r0)θµ(X).

From the assumption (viii) which is

Mf(r0)θ < 1

and by applying Theorem 2.1, V has a fixed point in the set B+
r0 .

Let us remember that from Remark 1, the set FixV of fixed points of V belonging
to C(I) is a member of kerµ. i.e. µ(FixV ) = 0 and this implies i(FixV ) = 0. Therefore
the solutions are nondecreasing on I. Thus the proof is completed.

Corollary 3.1. We assume that the function a is positive, the function f is contin-
uous and the assumptions (i)-(vi) and (viii) are provided in the Theorem 3.1. Let us
take the inequality

a(‖α‖) + (c+ d)Mf(1) < 1

instead of (vii). So, the function h defined as

h : [0, 1]→ R, h(r) = a(‖α‖) + (c+ drp)Mf(r)− r

is continuous and

h(0) = a(‖α‖) + cMf(0) > 0

and

h(1) = a(‖α‖) + (c+ d)Mf(1)− 1 < 0.

Thus, there exists at least one a number r0 ∈ (0, 1) such that h(r0) = 0. Consequently,
all of the assumptions of the Theorem 3.1 hold and the equation (3.1) has at least one
solution x = x(t) ∈ B+

r0 .

Example 3.1. Let us consider the equation

x(t) =
t2

5
+

1 + x2(t)

2

∫ t2

0

sin t+ ex(τ
2)

8 + τ
dτ, t ∈ I = [0, 1], (3.4)
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where α(t) = t2, β(t) = t, γ(t) = t2, η(τ) = τ2, a(s) = s
5 , a(α(t)) = t2

5 and the
function a is nondecreasing and positive and ‖α‖ = 1, a(‖α‖) = 1

5 .

v(t, τ, x) =
sin t+ ex

8 + τ

and

(Tx)(t) =
1 + x2(t)

2
.

We have the following estimate

|v(t, τ, x)| =
∣∣∣∣ sin t+ ex

8 + τ

∣∣∣∣ ≤ 1 + ex

8
≤ 1 + e|x|

8
= f(|x|)

for all t, τ ∈ I and x ∈ R. From the above equation we see that f(x) = 1+ex

8 . Let
us see that the operator T is continuous. Let x0 be arbitrarily element chosen from
C(I). For ‖x− x0‖ < δ, we have the following estimate:

‖Tx− Tx0‖ = max
t∈I

∣∣∣∣1 + x2(t)

2
− 1 + x20(t)

2

∣∣∣∣
=

1

2
max
t∈I

∣∣x2(t)− x20(t)
∣∣

=
1

2
max
t∈I

[|x(t)− x0(t)||x(t) + x0(t)|]

and

|x(t)| = |x(t)− x0(t) + x0(t)| ≤ |x(t)− x0(t)|+ |x0(t)| ≤ ‖x− x0‖+ ‖x0‖

such that,

|x(t)| ≤ δ + ‖x0‖. (3.5)

From the inequality (3.5), we obtain

|x(t) + x0(t)| ≤ |x(t)|+ ‖x0‖ ≤ δ + 2‖x0‖.

Thus, we obtain

‖Tx− Tx0‖ =
1

2
max
t∈I

[|x(t)− x0(t)||x(t) + x0(t)|]

≤ 1

2
(δ + 2‖x0‖) max

t∈I
|x(t)− x0(t)|

=
1

2
(δ + 2‖x0‖)‖x− x0‖.

Taking

1

2
(δ + 2‖x0‖)δ = ε
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we get

δ2 + 2‖x0‖δ − 2ε = 0 ⇒ (δ + ‖x0‖)2 − ‖x0‖2 − 2ε = 0

⇒ (δ + ‖x0‖)2 = ‖x0‖2 + 2ε

⇒ δ + ‖x0‖ =
√
‖x0‖2 + 2ε.

If δ is chosen as

δ =
√
‖x0‖2 + 2ε− ‖x0‖ > 0,

it is seen that the operator T is continuous at the point x0. Since x0 is an arbitrarily
element chosen from C(I), T is continuous on C(I). On the other hand, for each
x ∈ C(I) and each t ∈ I the inequality

|(Tx)(t)| ≤ c+ d‖x‖p, (p > 0)

is provided. Namely,∣∣∣∣1 + x2(t)

2

∣∣∣∣ ≤ 1

2
+

1

2
|x2(t)| = 1

2
+

1

2
|x(t)|2 ≤ 1

2
+

1

2
‖x‖2, c =

1

2
, d =

1

2
, p = 2.

There exists r0 positive solution that provides the inequality

a(‖α‖) + (c+ drp)Mf(r) ≤ r,

where ‖α‖ = 1, a(‖α‖) = 1
5 , M = 1. Any number r0 which provides the inequality

0, 375018 ≤ r0 ≤ 1, 65394

is a solution of the following inequality:

1

5
+

1

8
(1 + er)

(
1

2
+

1

2
r2
)
≤ r.

For example r0 = 1 is a solution of this inequality.
Let X 6= ∅, X ⊂ B+

r0 , x ∈ B+
r0 and t1, t2 ∈ I. We have the following estimate:

|(Tx(t2))− (Tx(t1))| =

∣∣∣∣1 + x2(t2)

2
− 1 + x2(t1)

2

∣∣∣∣
≤ 1

2
|x(t2) + x(t1)||x(t2)− x(t1)|

≤ 1

2
(|x(t2)|+ |x(t1)|)|x(t2)− x(t1)|

≤ 1

2
(‖x‖+ ‖x‖)|x(t2)− x(t1)|

≤ 1

2
(2r0)|x(t2)− x(t1)|
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sup
t1,t2∈I

|(Tx)(t2))− (Tx)(t1))| ≤ sup
t1,t2∈I

|x(t2)− x(t1)|

i.e.

w(Tx, ε) ≤ w(x, ε).

Thus, we have the following inequalities:

sup
x∈X

w(Tx, ε) ≤ sup
x∈X

w(x, ε),

w(TX, ε) ≤ w(X, ε),

lim
ε→0

w(TX, ε) ≤ lim
ε→0

w(X, ε),

w0(TX) ≤ w0(X). (3.6)

Let X 6= ∅, X ⊂ B+
r0 , x ∈ B+

r0 , t1 ≤ t2 and t1, t2 ∈ I. In this case we have the
following estimate:

|(Tx)(t2)− (Tx)(t1)| − [(Tx)(t2)− (Tx)(t1)]

=

∣∣∣∣1 + x2(t2)− 1− x2(t1)

2

∣∣∣∣− [1 + x2(t2)− 1− x2(t1)

2

]
≤ 1

2
|x(t2)− x(t1)||x(t2) + x(t1)| − 1

2
[(x(t2)− x(t1))(x(t2) + x(t1))]

=
1

2
(|x(t2)|+ |x(t1)|) [|x(t2)− x(t1)| − (x(t2)− x(t1))]

≤ 1

2
(‖x‖+ ‖x‖)[|x(t2)− x(t1)| − (x(t2)− x(t1))]

≤ 1

2
2r0[|x(t2)− x(t1)| − (x(t2)− x(t1))]

= |x(t2)− x(t1)| − [x(t2)− x(t1)].

Hence,

sup
t1,t2∈I

[|(Tx)(t2)− (Tx)(t1)| − [(Tx)(t2)− (Tx)(t1)]]

≤ sup
t1,t2∈I

[|x(t2)− x(t1)| − [x(t2)− x(t1)]],

i(Tx) ≤ i(x)

in view of the inequalities,

sup
x∈X

i(Tx) ≤ sup
x∈X

i(x)
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and so, we obtain

i(TX) ≤ i(X). (3.7)

From the inequalities (3.6) and (3.7), we get

µ(TX) ≤ µ(X),

where θ can be taken as θ = 1. In this case the inequality Mf(r0)θ < 1 holds.
Because, for θ = 1, r0 = 1, M = 1 and f(1) = 1+e

8 , the inequality

Mf(1)θ =
1 + e

8
< 1

holds. Since all of our assumptions are satisfied, this equation has a nondecreasing
solution on B+

r0 .

Remark 2. In the Example 3.1, since

|(Tx)(t)| ≤ 1

2
+

1

2
‖x‖2

for all x ∈ C(I) and t ∈ I, the condition (v)

|(Tx)(t)| ≤ c+ d‖x‖

in [3] does not hold. Hence, the result given in [3] is not applicable to the integral
equation (3.4) in the Example 3.1.

Example 3.2. Let us consider the equation

x(t) =
sin(t− 1 + π

2 )

5
+

1 + x3(t)

7

∫ t3

0

tan t+ ex(τ
2)

2 + τ
dτ, t ∈ I = [0, 1], (3.8)

where α(t) = t, β(t) = t, γ(t) = t3, η(τ) = τ2, the function a(t) =
sin(t−1+π

2 )

5 is
nondecreasing and positive and a(‖α‖) = 1

5 . We have the following estimate:

|v(t, τ, x)| =
∣∣∣∣ tan t+ ex

2 + τ

∣∣∣∣ ≤ √3 + ex

2
≤
√

3 + e|x|

2
= f(|x|)

for all t, τ ∈ I and x ∈ R. From the above equation, we see that f(x) =
√
3+ex

2 and

(Tx)(t) = 1+x3(t)
7 . It is obvious that T : C(I)→ C(I). Let us see that the operator T

is continuous. Let x0 be an arbitrarily element chosen from C(I). When ‖x−x0‖ < δ
we have the following estimate:

‖Tx− Tx0‖ = max
t∈I

∣∣∣∣1 + x3(t)

7
− 1 + x30(t)

7

∣∣∣∣
=

1

7
max
t∈I
|x3(t)− x30(t)|

=
1

7
max
t∈I

[|x(t)− x0(t)||x2(t) + x(t)x0(t) + x20(t)|]
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|x2(t) + x(t)x0(t) + x20(t)| = |(x(t)− x0(t))2 + 3x(t)x0(t)|
≤ |(x(t)− x0(t))|2 + 3|x(t)x0(t)|
< δ2 + 3|x(t)− x0(t) + x0(t)||x0(t)|
≤ δ2 + 3δ‖x0‖+ 3‖x0‖2.

From the above inequalities, we obtain

‖Tx− Tx0‖ =
1

7
max
t∈I

[|x(t)− x0(t)||x2(t) + x(t)x0(t) + x20(t)|]

<
1

7
(δ3 + 3δ2‖x0‖+ 3δ‖x0‖2)

=
1

7
((δ + ‖x0‖)3 − ‖x0‖3)

=
1

7
(δ + ‖x0‖)3 −

1

7
‖x0‖3 = ε

⇒ 1

7
(δ + ‖x0‖)3 = ε+

1

7
‖x0‖3

⇒ δ + ‖x0‖ = (7ε+ ‖x0‖3)
1
3

⇒ δ = (7ε+ ‖x0‖3)
1
3 − ‖x0‖ > 0.

If δ is chosen as δ = (7ε + ‖x0‖3)
1
3 − ‖x0‖ > 0, it is seen that the operator T is

continuous at the point x0. Since x0 is an arbitrarily element chosen from C(I), T is
continuous on C(I). Since

|(Tx)(t)| =
∣∣∣∣1 + x3(t)

7

∣∣∣∣ ≤ 1

7
+

1

7
|x3(t)| = 1

7
+

1

7
|x(t)|3 ≤ 1

7
+

1

7
‖x‖3,

c =
1

7
, d =

1

7
, p = 3,

the inequality

|(Tx)(t)| ≤ c+ d‖x‖p, (p > 0)

holds. There exists positive solution r0 that provides the inequality

a(‖α‖) + (c+ drp)Mf(r) ≤ r,

where ‖α‖ = 1, a(‖α‖) = 1
5 , M = 1.

Any number r0 providing the inequality

0, 386812 ≤ r0 ≤ 1, 32116

is a solution of the following inequality:(
1

2
(
√

3 + er)

)(
1

7
+

1

7
r3
)

+
1

5
≤ r.
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For example r0 = 1 is a solution of this inequality.
For any t1, t2 ∈ [0, 1] such that |t2 − t1| ≤ ε, ∅ 6= X ⊂ B+

r0 = B+
1 and x ∈ X, we

obtain

|(Tx)(t2)− (Tx)(t1)| =

∣∣∣∣1 + x3(t2)

7
− 1 + x3(t1)

7

∣∣∣∣
=

1

7
|x3(t2)− x3(t1)|

≤ 1

7
|x(t2)− x(t1)||x2(t2) + x(t2)x(t1) + x2(t1)|

≤ 1

7
|x(t2)− x(t1)|(|x2(t2)|+ |x(t2)x(t1)|+ |x2(t1)|)

≤ 1

7
|x(t2)− x(t1)|3‖x‖2

≤ 3

7
|x(t2)− x(t1)|.

If we take the supremum on both sides of inequality over t1, t2 ∈ I such that
|t2 − t1| ≤ ε and x ∈ X, we get

w(Tx, ε) ≤ 3

7
w(x, ε).

If we take the supremum at this inequality over x ∈ X, we get

w(TX, ε) ≤ 3

7
w(X, ε),

where, for ε→ 0, we obtain

w0(TX) ≤ 3

7
w0(X). (3.9)

For any t1, t2 ∈ [0, 1] such that t1 ≤ t2, ∅ 6= X ⊂ B+
r0 = B+

1 and x ∈ X, we get

|(Tx)(t2)− (Tx)(t1)| − [(Tx)(t2)− (Tx)(t1)]

=

∣∣∣∣1 + x3(t2)

7
− 1 + x3(t1)

7

∣∣∣∣− [1 + x3(t2)

7
− 1 + x3(t1)

7

]
=

1

7

∣∣x3(t2)− x3(t1)
∣∣− 1

7
[x3(t2)− x3(t1)]

=
1

7
|(x(t2)− x(t1))(x2(t2) + x(t2)x(t1) + x2(t1))|

− 1

7
(x(t2)− x(t1))(x2(t2) + x(t2)x(t1) + x2(t1))

=
1

7
(x2(t2) + x(t2)x(t1) + x2(t1))[|x(t2)− x(t1)| − (x(t2)− x(t1))]

≤ 3

7
‖x‖2[|x(t2)− x(t1)| − (x(t2)− x(t1))]

≤ 3

7
[|x(t2)− x(t1)| − (x(t2)− x(t1))].
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If we take the supremum at this inequality over t1, t2 ∈ [0, 1] such that t1 ≤ t2, we get

i(Tx) ≤ 3

7
i(x).

If we take the supremum at this inequality over x ∈ X, we get

i(TX) ≤ 3

7
i(X). (3.10)

From the inequalities (3.9) and (3.10) we get

µ(TX) ≤ 3

7
µ(X).

Then, θ can be taken as θ = 3
7 . For r = 1, θ = 3

7 and M = 1, we get

Mf(1)
3

7
< 1.

Thus, all of our assumptions provide and hence this equation has a nondecreasing
solution on B+

r0 .

Remark 3. In the Example 3.2, since

|(Tx)(t)| ≤ 1

7
+

1

7
‖x‖3

for all x ∈ C(I) and t ∈ I, the condition (v)

|(Tx)(t)| ≤ c+ d‖x‖

in [3] does not hold. Hence, the result given in [3] is not applicable to the integral
equation (3.8) presented in the Example 3.2.
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