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1. Introduction

Fixed point theory furnishes an effective and important tool for proving theoretical
as well as constructive existence for a variety of nonlinear problems arising from the
mathematical modelling of real world phenomena. The usual topological fixed point
methods (Schauder, Darbo, Sadovskii,. . . ) are generally only suited to nonlinear
problems with continuity and compactness. However, many problems in theory and
applications have no compactness. Some attempts have been made to overcome this
difficulty by using the weak topology, see [2, 3, 6, 7, 8, 9, 10, 11, 14, 34]. The interest
of the weak topology is mainly due to the vital role played by weak compactness in
the theory of infinite dimensional linear spaces. In particular, a Banach space X is
reflexive if and only if the closed unit ball is weakly compact. Equally, fixed point
theorems using the weak topology (Schauder-Tychonov, Arino-Gautier-Penot,. . .) are
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generally only suited to nonlinear problems with weak (sequential) continuity and
weak compactness. In several situations, the weak (sequential) continuity could rise
several difficulties. For example, in L1-spaces, which are the most natural functional
settings of many real world problems in physics and population dynamics (notably
when the unknown is a density), only linear superposition (Nemytskii) operators are
weakly (sequentially) continuous [4]. To our knowledge, the first paper where the
weak topology was successfully applied to fixed point theorems without requiring the
weak continuity of the involved operators, was [29]. In the quoted paper, the authors
used the concepts of ws-compactness and ww-compactness instead of the (sequen-
tial) weak continuity. Such concepts proved to be more effective in many practical
situations especially when we work in nonreflexive Banach spaces. This fact was il-
lustrated by proving the existence of an integrable solution for a stationary nonlinear
problem arising in transport theory and kinetic of gas and in many other situations
[12, 13, 16, 20, 21, 22, 29, 30].

In the present paper, we provide a new general treatment of fixed point theory
of monotone mappings in ordered vector spaces. Specifically, we will show how weak
topology is successfully used in conjunction with the order in fixed point problems.
As the functional setting of many nonlinear problems arising from the mathematical
modeling of real world phenomena is usually an ordered vector space, our approach
gives an extremely powerful and direct tool to investigate the solvability of a large
class of evolution equations with lack of compactness. To illustrate our results, we
investigate the solvability of a class of first-order vector-valued ordinary differential
equations. Before proceeding to the detailed discussion, we recall some related defi-
nitions and auxiliary results. Let X be a Banach space and let P be a subset of X.
The set P is called an order cone if and only if:

(i) P is closed, nonempty and P 6= {0},

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P,

(iii) x ∈ P and −x ∈ P ⇒ x = 0.

An order cone permits to define a partial order in X by

x ≤ y iff y − x ∈ P.

Conversely, let X be a real Banach space with a partial order compatible with the
algebraic operations in X, that is,

x ≥ 0 and λ ≥ 0 implies λx ≥ 0

x1 ≤ y1 and x2 ≤ y2 implies x1 + x2 ≤ y1 + y2.

The positive cone of X is defined by

X+ = {x ∈ X : 0 ≤ x}.



Fixed Point Theorems in Ordered Banach Spaces 7

Definition 1.1.

(i) A subset M ⊂ X is said order bounded if there exist u, v ∈ X such that
u ≤ x ≤ v, for all x ∈M.

(ii) The order cone P is called normal if and only if there is a number c > 0 such
that for all x, y ∈ X we have

0 ≤ x ≤ y ⇒ ‖x‖ ≤ c‖y‖. (1.1)

The least positive number c (if it exists) satisfying (1.1) is called a normal
constant.

Remark 1.2. If the cone P is normal, then every order interval is norm bounded
(see e.g. [23, Theorem 2.1.1]).

Remark 1.3. Let K be a compact Hausdorff space and E be an ordered Banach space
with normal positive cone. We denote by C(K,E) the Banach space of all continuous
E -valued functions on K endowed with the usual maximum norm. Plainly C(K,E)
is an ordered Banach space with the natural ordering whose positive cone is given by

C+(K,E) = {f ∈ C(K,E) : f(x) ∈ E+, ∀x ∈ K}.

Since E+ is normal so is C+(K,E).

The following definitions are frequently used in the sequel.

Definition 1.4. Let M ⊂ X. The operator T : M → X is said to be an increasing
operator if x, y ∈ M, x ≤ y implies Tx ≤ Ty. The operator T : M → X is said to be
a decreasing operator if x, y ∈M, x ≤ y implies Ty ≤ Tx.

Definition 1.5. Let M be a nonempty closed subset of X. The operator T : M → X
is said to be monotone-subcontinuous if for any monotone sequence (increasing or
decreasing) (xn) in M that converges strongly to x the sequence (Txn) converges
weakly to Tx.

The following elementary result serves as the key tool in the proof of more sophis-
ticated results.

Lemma 1.6. [26] Let X be an ordered real Banach space with a normal order cone.
Suppose that {xn} is a monotone sequence which has a subsequence {xnk

} converging
weakly to x∞. Then {xn} converges strongly to x∞. Moreover, if {xn} is an increa-
sing sequence, then xn ≤ x∞(n = 1, 2, 3, . . .); if {xn} is a decreasing sequence, then
x∞ ≤ xn (n = 1, 2, 3, . . .).

By a poset F = (F,≤) we mean a nonempty set F equipped with a partial ordering
relation ≤ .

Lemma 1.7. [25, Lemma 1.1.5] Let {xn} be a sequence in a poset F.



8 A. Alahmari, M. Mabrouk and M.-A. Taoudi

(a) If {xn} is totally ordered, then it has a monotone subsequence.

(b) If {xn} is nondecreasing (resp. nonincreasing), then it has the supremum (resp.
the infimum) x if and only if x is the supremum (resp. the infimum) of some
of its subsequences.

Combining Lemma 1.6 and Lemma 1.7 we obtain the following interesting result.

Lemma 1.8. Let X be an ordered real Banach space with a normal order cone.
Suppose that {xn} is a totally ordered sequence which is contained in a relatively
weakly compact set. Then {xn} converges strongly in X.

In what follows, ψ will always denote a measure of weak noncompactness (MWNC)
on the Banach space X. We refer the reader to [5] for the axiomatic definition of a
measure of weak noncompactness. One of the most frequently exploited measure of
weak noncompactness was defined by De Blasi [15] as follows:

w(M) = inf{r > 0 : there exists W weakly compact such that M ⊆W +Br},

for each bounded subset M of X; Here, Br stands for the closed ball of X centered
at origin with radius r.
The following results are crucial for our purposes. We first state a theorem of Am-
brosetti type (see [31] for a proof).

Theorem 1.9. Let E be a Banach space and let H ⊆ C([0, T ], E) be bounded and
equicontinuous. Then the map t→ w(H(t)) is continuous on [0, T ] and

w(H) = sup
t∈[0,T ]

w(H(t)) = w(H[0, T ]),

where H(t) = {h(t) : h ∈ H} and H[0, T ] =
⋃
t∈[0,T ]{h(t) : h ∈ H}.

The following Lemma is well-known (see for example [32]).

Lemma 1.10. If H ⊆ C([0, T ], E) is equicontinuous and x0 ∈ C([0, T ], E), then
co(H ∪ {x0}) is also equicontinuous in C([0, T ], E).

2. Fixed point results

In this section, we prove some fixed point theorems for monotone mappings in ordered
Banach spaces. Our results combine the advantages of the strong topology (i.e. the
involved mappings will be continuous (or subcontinuous) with respect to the strong
topology) with the advantages of the weak topology (i.e. the maps will satisfy some
compactness conditions relative to the weak topology) to draw new conclusions about
fixed points for a given monotone map.

Theorem 2.1. Let X be an ordered Banach space with a normal cone P. Let u0, v0 ∈
X with u0 < v0 and A : [u0, v0]→ X be a monotone-subcontinuous increasing operator
satisfying the following:
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u0 ≤ Au0, Av0 ≤ v0. (2.1)

If, in addition, A verifies

(P(n0)): There exists an integer n0 ≥ 1 such that: for any monotone sequence
V = {xn} of [u0, v0] and any finite subset F of [u0, v0] of cardinal n0, we have:

V = F ∪An0(V ) implies V is relatively weakly compact.

Then, A has a minimal fixed point u∗ and a maximal fixed point u∗ in [u0, v0] and

u∗ = lim
n→∞

un and u∗ = lim
n→∞

vn, (2.2)

where un = Aun−1 and vn = Avn−1, n = 1, 2, . . .

u0 ≤ u1 ≤ · · ·u∗ ≤ u∗ ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (2.3)

Proof. Let un = Aun−1 and vn = Avn−1 for n ≥ 1. Since A is increasing, then

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · vn ≤ · · · v1 ≤ v0. (2.4)

Let S = {u0, u1, . . . , un, . . .}. Clearly, for any integer k ≥ 1 we have

Ak(S) ∪ {u0, u1, . . . , uk−1} = S.

From our hypotheses we know that S is relatively weakly compact. Referring to
Lemma 1.8, we see that {un} is convergent. Let u∗ be its limit. The monotone-
subcontinuity of A yields Au∗ = u∗. Similarly, we can prove that {vn} converges to
some u∗ and Au∗ = u∗. Finally, we prove that u∗ and u∗ are the maximal and minimal
fixed points of A in [u0, v0]. Let x ∈ [u0, v0] and Ax = x. Since A is increasing, it
follows from u0 ≤ x ≤ v0 that Au0 ≤ Ax ≤ Av0, i.e. u1 ≤ x ≤ v1. Using the same
argument, we get u2 ≤ x ≤ v2 and, in general, un ≤ x ≤ vn (n = 1, 2, 3, . . .). Now,
letting n go to infinity we get u∗ ≤ x ≤ u∗.

As a convenient specialization of Theorem 2.1, we state the following.

Corollary 2.2. Let X be an ordered Banach space with a normal cone P. Let
u0, v0 ∈ X with u0 < v0 and A : [u0, v0]→ X be a monotone-subcontinuous increasing
operator satisfying the following:

u0 ≤ Au0, Av0 ≤ v0. (2.5)

If, in addition, A verifies

(P(1)): if V = {xn} is a monotone sequence of [u0, v0] and a ∈ [u0, v0], then
V = {a} ∪A(V ) implies V is relatively weakly compact.
Then A has a minimal fixed point u∗ and a maximal fixed point u∗ in [u0, v0] satisfying
(2.2) and (2.3).



10 A. Alahmari, M. Mabrouk and M.-A. Taoudi

Proof. Apply Theorem 2.1 with n0 = 1.

Another consequence of Theorem 2.1 is the following. Recall that a measure
of weak noncompactness ψ on a Banach space X is said to be nonsingular if
ψ(M ∪ {a}) = ψ(M) for every a ∈ X and every nonempty bounded subset
M of X.

Corollary 2.3. Let X be an ordered Banach space with a normal cone P and ψ be
a nonsingular measure of weak noncompactness on X. Let u0, v0 ∈ X with u0 < v0
and A : [u0, v0] → X be a monotone-subcontinuous increasing operator satisfying the
following:

u0 ≤ Au0, Av0 ≤ v0. (2.6)

In addition, if for any Ω = {un} ⊂ [u0, v0] countable and monotone with ψ(Ω) 6= 0
we have

ψ(An0(Ω)) < ψ(Ω),

for some integer n0 ≥ 1. Then, A has a minimal fixed point u∗ and a maximal fixed
point u∗ in [u0, v0] satisfying (2.2) and (2.3).

Proof. By virtue of Theorem 2.1, it suffices to show that (P(n0)) holds true. To
do this, let V = {xn} be a monotone sequence of [u0, v0] and F be a finite subset of
[u0, v0] of cardinal n0 such that V = F ∪An0(V ). Since P is normal then, according to
Remark 1.2, the order interval [u0, v0] is bounded. This implies that V and An0(V )
are bounded and we have ψ(V ) = ψ(F ∪ An0(V )) = ψ(An0(V )). Consequently, it
follows from our hypotheses that ψ(V ) = 0, which means that V is relatively weakly
compact. This achieves the proof.

Remark 2.4. Corollary 2.3 extends [23, Theorem 3.1.1].

Corollary 2.5. Let u0, v0 ∈ X with u0 < v0 and A : [u0, v0] → X be a monotone-
subcontinuous increasing operator satisfying (2.6). If P is normal and An0([u0, v0]) is
relatively weakly compact for some integer n0 ≥ 1, then A has a minimal fixed point
u∗ and a maximal fixed point u∗ in [u0, v0] satisfying (2.2) and (2.3).

For later use, we consider the following condition.

(C)


A : P → P satisfies A2θ ≥ εAθ where 0 < ε < 1, and for any
εAθ ≤ x ≤ Aθ and ε ≤ t < 1, there exists η = η(x, t) > 0, such that

A(tx) ≤ (t(1 + η))
−1
Ax.

We will need the following lemmas from [23].

Lemma 2.6. [23, Lemma 3.2.1] Let A : P → P be a decreasing operator satisfying
the condition (C). If u, v ∈ P with Au = v and Av = u, then u = v.

Lemma 2.7. [23, Lemma 3.2.2] Let A : P → P be a decreasing operator satisfying
the condition (C). If u, v ∈ P with Au = u and Av = v, then u = v.
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Theorem 2.8. Let X be an ordered Banach space with a normal cone P. Let
A : P → P be a monotone-subcontinuous decreasing operator satisfying the conditions
(C) and (P(n0)) for some integer n0 ≥ 1. Then A has a unique fixed point u∗ in P
and

u∗ = lim
n→∞

un, (2.7)

where un = Aun−1, n = 1, 2, . . .

Proof. Keeping in mind that A : P → P is decreasing we easily deduce that

θ = u0 ≤ u2 ≤ · · · ≤ u2n ≤ · · · ≤ u2n+1 ≤ · · · ≤ u1 = Aθ. (2.8)

Let S = {u0, u1, . . . , un, . . .}. From (2.8) and the normality of P we infer that S
is bounded. Clearly, for any integer k ≥ 1 we have

Ak(S) ∪ {u0, u1, . . . , uk−1} = S.

From our hypotheses we know that S is relatively weakly compact. This implies that
the increasing sequence {u2n} has a weakly convergent subsequence. Referring to
Lemma 1.6, we see that {u2n} is convergent. Let u∗ be its limit. Similarly we can
prove that the sequence {u2n+1} converges to some u∗. Taking the limit at the both
sides of u2n+1 = Au2n and u2n+2 = Au2n+1 and using the monotone-subcontinuity
of A we get u∗ ≤ u∗, u∗ = Au∗ and u∗ = Au∗. Invoking Lemma 2.6 we infer that
u∗ = u∗ is a fixed point of A. The uniqueness follows from Lemma 2.7.

As a convenient specialization of Theorem 2.8 we obtain the following result.

Corollary 2.9. Let X be an ordered Banach space with a normal cone P and ψ be a
nonsingular measure of weak noncompactness on X. Let A : P → P be a monotone-
subcontinuous decreasing operator satisfying the condition (C). In addition, if for any
Ω = {un} ⊂ P countable and monotone with ψ(Ω) 6= 0 we have

ψ(An0(Ω)) < ψ(Ω),

for some integer n0 ≥ 1, then A has a unique fixed point u∗ in P and

u∗ = lim
n→∞

un, (2.9)

where un = Aun−1, n = 1, 2, . . .

Proof. In view of Theorem 2.8, it suffices to show that A verifies (P(n0)). The
reasoning in Corollary 2.3 yields the result.

Remark 2.10. Theorem 2.8 and Corollary 2.9 extend [23, Theorem 3.2.1].
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3. Application to differential equations

We shall use the results in previous sections to get an existence theorem for a non-
linear ODE in a Banach space. The nonlinear term satisfies an appropriate condition
expressed in terms of the De Blasi measure of weak noncompactness. Let E be an
ordered Banach space with a normal cone P. We consider the following initial value
problem

u′ = f(t, u) on I, u(0) = u0, (3.1)

where I = [0, 1], u ∈ C1(I, E), f ∈ C(I × E,E). A vector-valued function u : I → E
is said to be a solution of (3.1) on I if u(t) is continuously differentiable and satisfies
(3.1) on I.
In [18], Du and Lakshmikantham proved that if the problem (3.1) has a lower solution
v0 and an upper solution w0 with v0 ≤ w0, and the nonlinear term satisfies the
monotonicity condition

f(t, y)− f(t, x) ≥ −M(y − x) whenever v0(t) ≤ x ≤ y ≤ w0(t) (3.2)

for some M > 0, and the compactness measure condition

α(f(t, V )) ≤ τα(V ) (3.3)

for any t ∈ I and any bounded subset V of E, where τ is a positive constant and
α(.) denotes the Kuratowski measure of noncompactness in E, then the problem (3.1)
has a minimal and a maximal solution between v0 and w0, which can be obtained
by a monotone iterative procedure starting from v0 and w0 respectively. When E is
weakly sequentially complete, Y. Du [17] improved the result of [18] and removed the
condition (3.3).
Our aim in this section is to improve and extend the aforementioned results. We will
replace the noncompactness measure condition (3.3) by a weaker condition expressed
in terms of the De Blasi measure of weak noncompactness. From now on, we assume
the following:

(i) There exist v0, w0 ∈ C1(I, E) with v0(t) ≤ w0(t) on I such that:

v′0(t) ≤ f(t, v0(t)), v0(0) ≤ u0

w′0(t) ≥ f(t, w0(t)), w0(0) ≥ u0.

(ii) For some M > 0,

f(t, y)− f(t, x) ≥ −M(y − x) whenever v0(t) ≤ x ≤ y ≤ w0(t).
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(iii) There is a constant τ ≥ 0 such that for any equicontinuous monotone sequence
V = {un} of [v0, w0] and for any a, b ∈ [0, 1] with a < b we have

w(f([a, b]× V )) ≤ τw(V [a, b]),

where f([a, b]× V ) := {f(s, x(s)), a ≤ s ≤ b, x ∈ V }.

Remark 3.1. Let g(s, x) = f(s, x)+Mx. Then, for any monotone sequence V = {un}
of [v0, w0] and for any a, b ∈ [0, 1] with a < b we have

w(g([a, b]× V )) ≤ µw(V [a, b]), (3.4)

where µ = τ +M.
Now, let t ∈ [0, 1] be fixed and let h(s, x) = e−M(t−s)g(s, x), for s ∈ [0, t] and x ∈ E.
It is readily verified that

h([0, t]× V ) ⊂ co (g([0, t]× V ) ∪ {0}) . (3.5)

Combining (3.4) and (3.5) we arrive at

w(h([0, t]× V )) ≤ µw(V [0, t]), (3.6)

where h([0, t]× V ) := {h(s, x(s)), 0 ≤ s ≤ t, x ∈ V }.

Now, we are in a position to state our main result.

Theorem 3.2. Let assumptions (i)–(iii) be satisfied. Then the problem (3.1) has
a maximal and a minimal solution between v0 and w0, which can be obtained by a
monotone iterative procedure starting from v0 and w0 respectively.

Proof. We consider the equivalent modified problem

u′ +Mu = f(t, u) +Mu on I, u(0) = u0, (3.7)

which is equivalent to the problem(
eMtu

)′
= eMt (f(t, u) +Mu) on I, u(0) = u0. (3.8)

Let us write (3.8) as an integral equation

u(t) = e−Mtu0 +

∫ t

0

e−M(t−s) (f(s, u(s)) +Mu(s)) ds. (3.9)

Define the operator A on C(I, E) by

(Au)(t) = e−Mtu0 +

∫ t

0

e−M(t−s) (f(s, u(s)) +Mu(s)) ds, t ∈ I. (3.10)
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It is easy to check that a fixed point of A is a solution of (3.1). We will demonstrate
that A satisfies all the hypotheses of Theorem 2.1. It is apparent that A is continuous.
From Hypothesis (ii) we know that A is increasing on [v0, w0]. To illustrate that
v0 ≤ Av0, let k(t) = v′0(t) + Mv0(t). Clearly, k ∈ C(I, E) and k(t) ≤ f(t, v0(t)) +

Mv0(t), t ∈ I. Keeping in mind the fact that
(
eMtv0(t)

)′
= eMtk(t), we deduce that

for all t ∈ I we have:

eMtv0(t) = v0(0) +

∫ t

0

eMsk(s)ds

≤ u0 +

∫ t

0

eMs(f(s, v0(s)) +Mv0(s))ds.

Accordingly, v0 ≤ Av0. Similarly, we can prove that Aw0 ≤ w0. We claim that for
any integer k ≥ 1 and any V ⊂ [u0, v0] the set Ak(V ) is equicontinuous. Indeed, let
t, t0 ∈ I with t < t0 and u ∈ [v0, w0]. Then,

‖Au(t)−Au(t0)‖ ≤ (e−Mt−e−Mt0)‖u0‖+
∫ t

0

(e−M(t−s)−e−M(t0−s))‖g(s, u(s))‖ds

+

∫ t0

t

‖g(s, u(s))‖ds.

For any u ∈ [v0, w0], by Assumption (ii), we have

g(s, v0(s)) ≤ g(s, u(s)) ≤ g(s, w0(s)).

By the normality of the cone P, there exists Cg > 0 such that

‖g(t, u(t))‖ ≤ Cg, u ∈ [v0, w0].

Accordingly,

‖Au(t)−Au(t0)‖ ≤ (e−Mt − e−Mt0)‖u0‖+ Cg

∫ t

0

(e−M(t−s) − e−M(t0−s))ds

+Cg(t0 − t).

Consequently,
‖Au(t)−Au(t0)‖ → 0 as t→ t−0 ,

uniformly with respect to u. Similarly, we get

‖Au(t)−Au(t0)‖ → 0 as t→ t+0 ,

uniformly with respect to u. This proves that A(V ) is equicontinuous. Therefore, for
any integer k ≥ 1 the set Ak(V ) is equicontinuous.

Now, let V ⊂ [v0, w0] and F be a finite subset of [v0, w0] such that V = Ak(V )∪F,
for some integer k ≥ 1. Since Ak(V ) is equicontinuous, then by invoking Lemma 1.10
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we conclude that V is equicontinuous. Let h be as described in Remark 3.1, then for
each t ∈ I, we have

w(A(V )(t)) = w

({
e−Mtu0 +

∫ t

0

h(s, u(s))ds : u ∈ V
})

≤ w(tco{h(s, u(s)) : u ∈ V, s ∈ [0, t]})
= tw(co{h(s, u(s)) : u ∈ V, s ∈ [0, t]})
≤ tw(h([0, t]× V )

≤ tµw(V [0, t]).

Theorem 1.9 implies (since V is equicontinuous) that

w(A(V )(t)) ≤ tµw(V ). (3.11)

Using (3.11) we get

w(A2(V )(t)) = w

({
e−Mtu0 +

∫ t

0

h(s, u(s))ds : u ∈ A(V )

})
= w

({∫ t

0

h(s, u(s))ds : u ∈ A(V )

})
. (3.12)

Fix t ∈ [0, 1]. We divide the interval [0, t] into m parts 0 = t0 < t1 < · · · < tm = t in
such a way that ∆ti = ti − ti−1 = t

m , i = 1, . . . ,m. For each u ∈ A(V ) we have∫ t

0

h(s, u(s))ds =

m∑
i=1

∫ ti

ti−1

h(s, u(s))ds

∈
m∑
i=1

∆tico{h(s, u(s)) : u ∈ A(V ), s ∈ [ti−1, ti]}

⊆
m∑
i=1

∆tico(h([ti−1, ti]×A(V )).

Using again Theorem 1.9 we infer that for each i = 2, . . . ,m there is a si ∈ [ti−1, ti]
such that

sup
s∈[ti−1,ti]

w(A(V )(s)) = w(A(V )[ti−1, ti]) = w(A(V )(si)). (3.13)

Consequently

w({
∫ t

0

h(s, x(s))ds : u ∈ A(V )} ≤
m∑
i=1

∆tiw(co(h([ti−1, ti]×A(V )))

≤ µ

m∑
i=1

∆tiw((A(V )([ti−1, ti]))

≤ µ

m∑
i=1

∆tiw(A(V )((si)).
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On the other hand, if m→∞ then

m∑
i=1

∆tiw(A(V )((si))→
∫ t

0

w(A(V )(s))ds. (3.14)

As a result,

w(A2(V )(t)) ≤ (µt)2

2
w(V ). (3.15)

By induction we get

w(An(V )(t)) ≤ (µt)n

n!
w(V ). (3.16)

Invoking Theorem 1.9 we obtain

w(An(V )) ≤ µn

n!
w(V ). (3.17)

Since limn→∞
µn

n! = 0, we may choose n0 as large as we please such that µn0

n0!
< 1.

Now, let V ⊂ [v0, w0] and F be a finite subset of [v0, w0] such that V = An0(V )∪F.
Then, w(V ) = w(An0(V ) ∪ F ) = w(An0(V )) ≤ µn0

n0!
w(V ). Thus, w(V ) = 0 and there-

fore V is relatively weakly compact. By applying Theorem 2.1 we infer that A has a
maximal and a minimal fixed points between v0 and w0, which can be obtained by a
monotone iterative procedure starting from v0 and w0 respectively. This completes
the proof.

Remark 3.3. If E is weakly sequentially complete (reflexive, in particular), then the
condition (iii) in Theorem 3.2 holds automatically. In fact, according to [17, Theorem
2.2] any monotone order-bounded sequence is relatively compact. Thus, Theorem 3.2
greatly improves [17, Theorem 4.1] and [18, Theorem 3.1].
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[9] J. Banaś, M.-A. Taoudi, Fixed points and solutions of operator equations for the
weak topology in Banach algebras, Taiwanese Journal of Mathematics 18 (2014)
871–893.

[10] C.S. Barroso, Krasnosel’skii’s fixed point theorem for weakly continuous maps,
Nonlinear Analysis 55 (1) (2003) 25–31.

[11] C.S. Barroso, E.V. Teixeira, A topological and geometric approach to fixed points
results for sum of operators and applications, Nonlin. Anal. 60 (4) (2005) 625–
650.

[12] A. Bellour, D. O’Regan, M.-A. Taoudi, On the existence of integrable solutions
for a nonlinear quadratic integral equation, J. Appl. Math. Comput. 46 (1-2)
(2014) 67–77.

[13] A. Bellour, M. Bousselsal, M.-A. Taoudi, Integrable solutions of a nonlinear in-
tegral equation related to some epidemic models, Glasnik Matematicki 49 (69)
(2014) 395–406.

[14] A. Chlebowicz, M-A. Taoudi, Measures of weak noncompactness and fixed points,
in: Advances in Nonlinear Analysis via the Concept of Measure of Noncompact-
ness, Springer, Singapore, 2017, 247–296.

[15] F.S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math.
Soc. Sci. Math. Roum. 21 (1977) 259–262.

[16] S. Djebali, Z. Sahnoun, Nonlinear alternatives of Schauder and Krasnosel’skij
types with applications to Hammerstein integral equations in L1 spaces, J. Dif-
ferential Equations 249 (9) (2010) 2061–2075.



18 A. Alahmari, M. Mabrouk and M.-A. Taoudi

[17] Y. Du, Fixed points of increasing operators in ordered Banach spaces and appli-
cations, Applicable Analysis 38 (1990) 1–20.

[18] S.W. Du, V. Lakshmikantham, Monotone iterative technique for differential equa-
tions in a Banach space, J. Math. Anal. Appl. 87 (2) (1982) 454–459.

[19] N. Dunford, J.T. Schwartz, Linear Operators, Part I: General Theory, Inter-
science Publishers, New York, 1958.

[20] J. Garcia-Falset, Existence of fixed points and measure of weak noncompactness,
Nonlin. Anal. 71 (2009) 2625–2633.

[21] J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math.
Nachr. 283 (12) (2010) 1736–1757.

[22] J. Garcia-Falset, K. Latrach, E. Moreno-Galvez, M.-A. Taoudi, Schaefer-
Krasnoselskii fixed point theorems using a usual measure of weak noncompact-
ness, J. Differential Equations 252 (5) (2012) 3436–3452.

[23] D. Guo, Y.J. Chow, J. Zhu, Partial Ordering Methods in Nonlinear Problems,
Nova Publishers, 2004.

[24] D.J. Guo, J.X. Sun, Z.L. Liu, The functional methods in nonlinear differential
equation, Shandong Technical and Science Press (in chinese) (2006) 1–6.

[25] S. Heikkila, V. Lakshmikantham, Monotone Iterative Techniques for Discontin-
uous Nonlinear Differential Equations, CRC Press, 1994.

[26] N. Hussain, M.-A. Taoudi, Fixed point theorems for multivalued mappings in
ordered Banach spaces with application to integral inclusions, Fixed Point Theory
Appl. (2016) 2016:65.

[27] Y. Li, Z. Liu, Monotone iterative technique for addressing impulsive integro-
differential equations in Banach spaces, Nonlinear Anal. 66 (1) (2007) 83–92.

[28] E. Liz, Monotone iterative techniques in ordered Banach spaces, Proceedings
of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996),
Nonlinear Anal. 30 (8) (1997) 5179–5190.

[29] K. Latrach, M.-A. Taoudi, A. Zeghal, Some fixed point theorems of the Schauder
and Krasnosel’skii type and application to nonlinear transport equations, J. Dif-
ferential Equations 221 (1) (2006) 256–271.

[30] K. Latrach, M.-A. Taoudi, Existence results for a generalized nonlinear Ham-
merstein equation on L1-spaces, Nonlin. Anal. 66 (2007) 2325–2333.

[31] A.R. Mitchell, C.K.L. Smith, An existence theorem for weak solutions of differ-
ential equations in Banach spaces, in: Nonlinear Equations in Abstract Spaces,
(edited by V. Lakshmikantham), Academic Press, 1978, 387–404.



Fixed Point Theorems in Ordered Banach Spaces 19

[32] J. Sun, X, Zhang, The fixed point theorem of convex-power condensing operator
and applications to abstract semilinear evolution equations, Acta Math. Sinica
(in chinese) 48 (2005) 339–446.

[33] M.-A. Taoudi, Integrable solutions of a nonlinear functional integral equation on
an unbounded interval, Nonlin. Anal. 71 (2009) 4131–4136.

[34] M.-A. Taoudi, Krasnosel’skii type fixed point theorems under weak topology fea-
tures, Nonlinear Anal. 72 (1) (2010) 478–482.

[35] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1965.

DOI: 10.7862/rf.2019.1

Abdullah Alahmari
email: aaahmari@uqu.edu.sa

ORCID: 0000-0002-9596-910X
Department of Mathematics
College of Applied Sciences
P. O. Box 715, Makkah 21955
KSA

Mohamed Mabrouk
email: Mohamed.Mabrouk@fsg.rnu.tn

Department of Mathematics
College of Applied Sciences
P. O. Box 715, Makkah 21955
KSA

Department of Mathematics
Faculty of Sciences of Gabès
University of Gabès
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