Abstract: In this paper we apply Rothe's Fixed Point Theorem to prove the interior approximate controllability of the following semilinear impulsive heat equation

\[
\begin{cases}
 z_t = \Delta z + 1_\omega u(t, x) + f(t, z, u(t, x)), & \text{in } (0, \tau] \times \Omega, t \neq t_k \\
 z = 0, & \text{on } (0, \tau) \times \partial \Omega,
 \\
 z(0, x) = z_0(x), & x \in \Omega, \\
 z(t^+_k, x) = z(t^-_k, x) + I_k(t_k, z(t_k, x), u(t_k, x)), & x \in \Omega,
\end{cases}
\]

where \(k = 1, 2, \ldots, p \), \(\Omega \) is a bounded domain in \(\mathbb{R}^N (N \geq 1) \), \(z_0 \in L_2(\Omega) \), \(\omega \) is an open nonempty subset of \(\Omega \), \(1_\omega \) denotes the characteristic function of the set \(\omega \), the distributed control \(u \) belongs to \(C([0, \tau]; L_2(\Omega)) \) and \(f, I_k \in C([0, \tau] \times \mathbb{R} \times \mathbb{R}; \mathbb{R}) \), \(k = 1, 2, 3, \ldots, p \), such that

\[
|f(t, z, u)| \leq a_0|z|^\alpha_0 + b_0|u|^\beta_0 + c_0, \quad u \in \mathbb{R}, z \in \mathbb{R}.
\]

\[
|I_k(t, z, u)| \leq a_k|z|^\alpha_k + b_k|u|^\beta_k + c_k, \quad k = 1, 2, 3, \ldots, p, \quad u \in \mathbb{R}, z \in \mathbb{R}.
\]

with \(\frac{1}{2} \leq \alpha_k < 1, \quad \frac{1}{2} \leq \beta_k < 1, \quad k = 0, 1, 2, 3, \ldots, p \). Under this condition we prove the following statement: For all open nonempty subsets \(\omega \) of \(\Omega \) the system is approximately controllable on \([0, \tau] \). Moreover, we could exhibit a sequence of controls steering the nonlinear system from an initial state \(z_0 \) to an \(\epsilon \) neighborhood of the final state \(z_1 \) at time \(\tau > 0 \).