Abstract: Kuniyeda, Montel and Toya had shown that the polynomial $p(z)=\sum_{k=0}^{n} a_{k} z^{k} ; a_{0} \neq 0$, of degree n, does not vanish in

$$
|z| \leq\left\{1+\left(\sum_{j=1}^{n}\left|a_{j} / a_{0}\right|^{p}\right)^{q / p}\right\}^{-1 / q}
$$

where $p>1, q>1,(1 / p)+(1 / q)=1$ and we had proved that $p(z)$ does not vanish in $|z| \leq \alpha^{1 / q}$, where

$$
\begin{aligned}
\alpha & =\text { unique root in }(0,1) \text { of } D_{n} x^{3}-D_{n} S x^{2}+\left(1+D_{n} S\right) x-1=0, \\
D_{n} & =\left(\sum_{j=1}^{n}\left|a_{j} / a_{0}\right|^{p}\right)^{q / p}, \\
S & =\left(\left|a_{1}\right|+\left|a_{2}\right|\right)^{q}\left(\left|a_{1}\right|^{p}+\left|a_{2}\right|^{p}\right)^{-(q-1)},
\end{aligned}
$$

a refinement of Kuniyeda et al.'s result under the assumption

$$
D_{n}<(2-S) /(S-1)
$$

Now we have obtained a generalization of our old result and proved that the function

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k},(\not \equiv \text { aconstant }) ; a_{0} \neq 0
$$

analytic in $|z| \leq 1$, does not vanish in $|z|<\alpha_{m}^{1 / q}$, where
$\alpha_{m}=$ unique root in $(0,1)$ of $D x^{m+1}-D M_{m} x^{2}+\left(1+D M_{m}\right) x-1=0$,
$D=\left(\sum_{k=1}^{\infty}\left|a_{k} / a_{0}\right|^{p}\right)^{q / p}$,
$M_{m}=\left(\sum_{k=1}^{m}\left|a_{k}\right|\right)^{q}\left(\sum_{k=1}^{m}\left|a_{k}\right|^{p}\right)^{-q / p}$,
$m=$ any positive integer with the characteristic that there exists a positive integer $k(\leq m)$ with $a_{k} \neq 0$.

