Starlikeness and convexity of certain integral operators defined by convolution

Jyoti Aggarwal and Rachana Mathur

Abstract: We define two new general integral operators for certain analytic functions in the unit disc U and give some sufficient conditions for these integral operators on some subclasses of analytic functions.

AMS Subject Classification: 30C45
Keywords and Phrases: Multivalent functions, Starlike Functions, Convex Functions, Convolution

1 Introduction

Let $A_p(n)$ denote the class of all functions of the form

$$f(z) = z^p + \sum_{k=p+n}^{\infty} a_k z^k \ (p,n \in \mathbb{N} = \{1, 2, 3, \ldots\}). \quad (1.1)$$

which is analytic in open unit disc $U = \{z \in \mathbb{C} | |z| < 1\}$. In particular, we set $A_p(1) = A_p, A_1(1) = A_1 := A$.

If $f \in A_p(n)$ is given by (1.1) and $g \in A_p(n)$ is given by

$$g(z) = z^p + \sum_{k=p+n}^{\infty} b_k z^k \ (p,n \in \{1, 2, 3, \ldots\}). \quad (1.2)$$

then the Hadamard product (or convolution) $f * g$ of f and g is given by

$$(f * g)(z) = z^p + \sum_{k=p+n}^{\infty} a_k b_k z^k = (g * f)(z). \quad (1.3)$$
We observe that several known operators are deducible from the convolutions. That is, for various choices of \(g \) in (1.3), we obtain some interesting operators. For example, for functions \(f \in \mathcal{A}_p(n) \) and the function \(g \) is defined by

\[
g(z) = z^p + \sum_{k=p+n}^{\infty} \psi_{k,m}(\alpha, \lambda, l, p)z^k \quad (m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}) \tag{1.4}
\]

where

\[
\psi_{k,m}(\alpha, \lambda, l, p) = \left[\frac{\Gamma(k+1)\Gamma(p-\alpha+1)}{\Gamma(p+1)\Gamma(k-\alpha+1)} \right]^m \Gamma(p+1)\Gamma(k-\alpha+1)^{p+l} \quad (m \in \mathbb{N}_0) \tag{1.4}
\]

The convolution (1.3) with the function \(g \) is defined by (1.4) gives an operator studied by Bulut ([1]).

\[
(f * g)(z) = D_{\lambda, p}^{m, \alpha} f(z)
\]

Using convolution we introduce the new classes \(\mathcal{US}_p^g(\delta, \beta, b) \) and \(\mathcal{UK}_p^g(\delta, \beta, b) \) as follows

Definition 1.1 A functions \(f \in \mathcal{A}_p(n) \) is in the class \(\mathcal{US}_p^g(\delta, \beta, b) \) if and only if \(f \) satisfies

\[
\text{Re}\left\{ p + \frac{1}{b} \left(\frac{z(f * g)(z)'}{(f * g)(z)} - p \right) \right\} > \delta \left| \frac{1}{b} \left(\frac{z(f * g)(z)'}{(f * g)(z)} - p \right) \right| + \beta, \tag{1.5}
\]

where \(z \in \mathbb{U}, b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p. \)

Definition 1.2 A functions \(f \in \mathcal{A}_p(n) \) is in the class \(\mathcal{US}_p^g(\delta, \beta, b) \) if and only if \(f \) satisfies

\[
\text{Re}\left\{ p + \frac{1}{b} \left(1 + \frac{z(f * g)(z)''}{(f * g)(z)'} - p \right) \right\} > \delta \left| \frac{1}{b} \left(1 + \frac{z(f * g)(z)''}{(f * g)(z)'} - p \right) \right| + \beta, \tag{1.6}
\]

where \(z \in \mathbb{U}, b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p. \)

Note that

\[
f \in \mathcal{UK}_p^g(\delta, \beta, b) \iff \frac{zf'(z)}{p} \in \mathcal{US}_p^g(\delta, \beta, b).
\]

Remark 1.1 (i) For \(\delta = 0 \), we have

\[
\mathcal{UK}_p^g(0, \beta, b) = \mathcal{K}_p^g(\beta, b) \quad \mathcal{US}_p^g(0, \beta, b) = \mathcal{S}_p^g(\beta, b)
\]

(ii) For \(\delta = 0 \) and \(\beta = 0 \)

\[
\mathcal{UK}_p^g(0, 0, b) = \mathcal{K}_p^g(b) \quad \mathcal{US}_p^g(0, 0, b) = \mathcal{S}_p^g(b)
\]

(iii) For \(\delta = 0, \beta = 0 \) and \(b = 1 \)

\[
\mathcal{UK}_p^g(0, 0, b) = \mathcal{K}_p^g \quad \mathcal{US}_p^g(0, 0, b) = \mathcal{S}_p^g
\]

(iv) For \((f_j * g)(z) = D_{\lambda, p}^{m, \alpha} f_j(z) \), we have two classes \(\mathcal{UK}_p^{n, j, p, n}(\delta_j, \beta_j, b) \) and \(\mathcal{US}_{\alpha, \lambda, p, n}(\delta_j, \beta_j, b) \) which is introduced by Guney and Bulut [1].
Definition 1.3 Let $\eta \in N, m = (m_1, \ldots, m_{\eta}) \in N_{0}^{\eta}$ and $k = (k_1, \ldots, k_{\eta}) \in R_{+}^{\eta}$. One defines the following general integral operators:

$$\mathcal{I}_{g}^{p,\eta,m,k} : \mathcal{A}_{p}(n)^{\eta} \rightarrow \mathcal{A}_{p}(n)$$

$$\mathcal{G}_{g}^{p,\eta,m,k} : \mathcal{A}_{p}(n)^{\eta} \rightarrow \mathcal{A}_{p}(n)$$

such that

$$\mathcal{I}_{g}^{p,\eta,m,k}(z) = \frac{z}{\pi} \int_{0}^{p} t^{p-1} \prod_{j=1}^{\eta} \left(\frac{((f_j * g)(t))}{t^{p}} \right)^{k_j} dt,$$

$$\mathcal{G}_{g}^{p,\eta,m,k}(z) = \frac{z}{\pi} \int_{0}^{p} t^{p-1} \prod_{j=1}^{\eta} \left(\frac{((f_j * g)'(t))}{t^{p-1}} \right)^{k_j} dt,$$

where $z \in U$, $f, g \in \mathcal{A}_{p}(n), 1 \leq j \leq \eta$.

Remark 1.2 (i) For $\eta = 1, m_1 = m, k_1 = k$, and $f_1 = f$, we have the new two new integral operators

$$\mathcal{I}_{g}^{p,\eta,m,k}(z) = \frac{z}{\pi} \int_{0}^{p} t^{p-1} \left(\frac{(f_1 * g)(t)}{t^{p}} \right)^{k_1} dt,$$

$$\mathcal{G}_{g}^{p,\eta,m,k}(z) = \frac{z}{\pi} \int_{0}^{p} t^{p-1} \left(\frac{(f_1 * g)'(t)}{t^{p-1}} \right)^{k_1} dt,$$

(ii) For $(f_j * g)(z) = D_{m,\lambda,\alpha}^{m,\sigma,\tau} f_j(z)$, we have

$$\mathcal{I}_{g}^{p,\eta,m,k}(z) = \frac{z}{\pi} \int_{0}^{p} t^{p-1} \prod_{j=1}^{\eta} \left(\frac{D_{m,\lambda,\alpha}^{m,\sigma,\tau} f_j(t)}{t^{p}} \right)^{k_j} dt,$$

$$\mathcal{G}_{g}^{p,\eta,m,k}(z) = \frac{z}{\pi} \int_{0}^{p} t^{p-1} \prod_{j=1}^{\eta} \left(\frac{D_{m,\lambda,\alpha}^{m,\sigma,\tau} f_j'(t)}{t^{p-1}} \right)^{k_j} dt,$$

These operators were introduced by Bulut [1].

(iii) If we take $g(z) = z^{\beta}/(1 - z)$, we have

$$\mathcal{I}_{g}^{p,\eta,m,k}(z) = \frac{z}{\pi} \int_{0}^{p} t^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_j)(t)}{t^{p}} \right)^{k_j} dt,$$

$$\mathcal{G}_{g}^{p,\eta,m,k}(z) = \frac{z}{\pi} \int_{0}^{p} t^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_j)'(t)}{t^{p-1}} \right)^{k_j} dt,$$

These two operators were introduced by Frasin [3].

2 Sufficient Conditions for $\mathcal{I}_{g}^{p,\eta,m,k}(z)$

Theorem 2.1 Let $\eta \in N, m = (m_1, \ldots, m_{\eta}) \in N_{0}^{\eta}$ and $k = (k_1, \ldots, k_{\eta}) \in R_{+}^{\eta}$. Also let $b \in C - \{0\}, \delta \geq 0, 0 \leq \beta < p$, and $f_j \in \mathcal{A}_{p}([0, \beta], \mathcal{A}_{p}(n))$ for $1 \leq j \leq \eta$. If

$$0 \leq p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p,$$
then the integral operator $I_{g}^{p,\eta,m,k}(z)$, defined by (1.8), is in the class $K_{g}^{p}(\tau,b)$ where

$$\tau = p + \sum_{j=1}^{\eta} k_{j}(\beta_{j} - p).$$

Proof. From the definition (1.8), we observe that $I_{g}^{p,\eta,m,k}(z) \in A_{p}(n)$. We can easily see that

$$(I_{g}^{p,\eta,m,k}(z))' = p^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_{j} \ast g)(z)}{z^{p}} \right)^{k_{j}}. \quad (2.2)$$

Differentiating (2.2) logarithmically and multiplying by 'z', we obtain

$$z (I_{g}^{p,\eta,m,k}(z))'' = p - 1 + \sum_{j=1}^{\eta} k_{j} \left(\frac{z((f_{j} \ast g)(z))'}{(f_{j} \ast g)(z)} - p \right) \quad (2.3)$$

or equivalently

$$1 + z \frac{z (I_{g}^{p,\eta,m,k}(z))''}{(I_{g}^{p,\eta,m,k}(z))'} - p = \sum_{j=1}^{\eta} k_{j} \left(\frac{z((f_{j} \ast g)(z))'}{(f_{j} \ast g)(z)} - p \right) \quad (2.4)$$

Then, by multiplying (2.4) with '1/b', we have

$$\frac{1}{b} \left(1 + z \frac{z (I_{g}^{p,\eta,m,k}(z))''}{(I_{g}^{p,\eta,m,k}(z))'} - p \right) = \sum_{j=1}^{\eta} k_{j} \frac{1}{b} \left(\frac{z((f_{j} \ast g)(z))'}{(f_{j} \ast g)(z)} - p \right) \quad (2.5)$$

or

$$p + \frac{1}{b} \left(1 + z \frac{z (I_{g}^{p,\eta,m,k}(z))''}{(I_{g}^{p,\eta,m,k}(z))'} - p \right) = p + \sum_{j=1}^{\eta} k_{j} \left(\frac{z((f_{j} \ast g)(z))'}{(f_{j} \ast g)(z)} - p + p - p \sum_{j=1}^{\eta} k_{j} \right) \quad (2.6)$$

Since $f_{j} \in US_{g}^{p}(\delta_{j},\beta_{j},b) \ (1 \leq j \leq \eta)$, we get

$$\Re \left\{ p + \frac{1}{b} \left(1 + z \frac{z (I_{g}^{p,\eta,m,k}(z))''}{(I_{g}^{p,\eta,m,k}(z))'} - p \right) \right\} \quad (2.7)$$

$$= p + \sum_{j=1}^{\eta} k_{j} \Re \left\{ \frac{1}{b} \left(\frac{z((f_{j} \ast g)(z))'}{(f_{j} \ast g)(z)} - p \right) \right\} + p - p \sum_{j=1}^{\eta} \delta_{j} k_{j}$$

$$> \sum_{j=1}^{\eta} k_{j} \delta_{j} \left| \frac{z((f_{j} \ast g)(z))'}{(f_{j} \ast g)(z)} - p \right| + p + \sum_{j=1}^{\eta} k_{j}(\beta_{j} - p).$$
Since
\[\sum_{j=1}^{\eta} k_j \delta_j \left\{ \frac{1}{b} \left(\frac{z((f_j * g)(z))'}{(f_j * g)(z)} - p \right) \right\} > 0 \]
because the integral operator \(I_{\eta} t_\eta g(z) \), defined by (1.8), is in the class \(K_{\eta} t_{\eta} g \) with
\[\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p). \]

\section{3 Sufficient Conditions for \(G_{\eta} t_{\eta} m_{\eta} k(z) \)}

\textbf{Theorem 3.1} Let \(\eta \in N, m = (m_1, ..., m_\eta) \in N_0^\eta \) and \(k = (k_1, ..., k_\eta) \in R_+^\eta \). Also let \(b \in C - \{0\}, \delta \geq 0, 0 \leq \beta < p \), and \(f_j \in US_{\eta} t_{\eta} g \) for \(1 \leq j \leq \eta \). If
\[0 \leq p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \quad (3.1) \]
then the integral operator \(G_{\eta} t_{\eta} m_{\eta} k(z) \), defined by (1.8), is in the class \(K_{\eta} t_{\eta} g \) where
\[\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p). \]

\textbf{Proof}. From the definition (1.8), we observe that \(I_{\eta} t_{\eta} m_{\eta} k(z) \in A_{\eta}(n) \). We can easily see that
\[(G_{\eta} t_{\eta} m_{\eta} k(z))' = p z^{p-1} \prod_{j=1}^{\eta} \left(\frac{(f_j * g)'(z)}{p z^{p-1}} \right)^{k_j}. \]

Differentiating (3.2) logarithmically and multiplying by \('z' \), we obtain
\[\frac{z (G_{\eta} t_{\eta} m_{\eta} k(z))''}{(G_{\eta} t_{\eta} m_{\eta} k(z))'} = p - 1 + \sum_{j=1}^{\eta} k_j \left(z \left(\frac{(f_j * g)(z))''}{(f_j * g)'(z)} + 1 - p \right) \right) \]
\[\text{or equivalently} \]
\[1 + \frac{z (G_{\eta} t_{\eta} m_{\eta} k(z))''}{(G_{\eta} t_{\eta} m_{\eta} k(z))'} - p = \sum_{j=1}^{\eta} k_j \left(z \left(\frac{(f_j * g)(z))''}{(f_j * g)'(z)} + 1 - p \right) \right) \]
\[\text{(3.4)} \]

Then, by multiplying (3.4) with \('1/b' \), we have
\[\frac{1}{b} \left(1 + \frac{z (G_{\eta} t_{\eta} m_{\eta} k(z))''}{(G_{\eta} t_{\eta} m_{\eta} k(z))'} - p \right) = \sum_{j=1}^{\eta} k_j \frac{1}{b} \left(z \frac{(f_j * g)(z))''}{(f_j * g)'(z)} + 1 - p \right) \]
\[\text{(3.5)} \]
or
\[
p + \frac{1}{b} \left(\frac{z \left(\mathcal{G}_{p,n,m,k}(z) \right)''}{\left(\mathcal{G}_{p,n,m,k}(z) \right)'} + 1 - p \right) = p + \sum_{j=1}^{\eta} k_j \frac{1}{b} \left(\frac{z \left((f_j * g)(z) \right)''}{(f_j * g)'(z)} + 1 - p + p - p \sum_{j=1}^{\eta} k_j \right)
\]
(3.6)

Since \(f_j \in \mathcal{U}K_{\eta}(\delta_j, \beta_j, b) \) (1 \(\leq j \leq \eta \)), we get
\[
\text{Re} \left\{ p + \frac{1}{b} \left(1 + \frac{z \left(\mathcal{G}_{p,n,m,k}(z) \right)''}{\left(\mathcal{G}_{p,n,m,k}(z) \right)'} - p \right) \right\}
\]
(3.7)
\[
= p + \sum_{j=1}^{\eta} k_j \text{Re} \left\{ \frac{1}{b} \left(\frac{z \left((f_j * g)(z) \right)''}{(f_j * g)'(z)} + 1 - p \right) \right\} + p - \sum_{j=1}^{\eta} pk_j + p + \sum_{j=1}^{\eta} k_j (\beta_j - p).
\]
\[
> \sum_{j=1}^{\eta} k_j \delta_j \left\{ \frac{1}{b} \left(\frac{z \left((f_j * g)(z) \right)''}{(f_j * g)'(z)} + 1 - p \right) \right\} + p + \sum_{j=1}^{\eta} k_j (\beta_j - p).
\]

Since
\[
\sum_{j=1}^{\eta} k_j \delta_j \left\{ \frac{1}{b} \left(\frac{z \left((f_j * g)(z) \right)''}{(f_j * g)'(z)} + 1 - p \right) \right\} > 0
\]
because the integral operator \(\mathcal{G}_{p,n,m,k}(z) \), defined by (1.8), is in the class \(\mathcal{K}_{\eta}(\tau, b) \) with
\[
\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).
\]

4 Corollaries and Consequences

For \(\eta = 1, m_1 = m, k_1 = k \), and \(f_1 = f \), we have

\textbf{Corollary 4.1} Let \(\eta \in N, m \in N_0^\eta \) and \(k \in R_+^\eta \). Also let \(b \in C - [0], \delta \geq 0, 0 \leq \beta < p \), and \(f \in US_{\eta}(\delta, \beta, b) \) for 1 \(\leq j \leq \eta \). If
\[
0 \leq p + k(\beta - p) < p,
\]
then the integral operator \(\mathcal{I}_{\eta}(p,n,m,k)(z) \) is in the class \(\mathcal{K}_{\eta}(\tau, b) \) where
\[
\tau = p + k(\beta - p).
\]

\textbf{Corollary 4.2} Let \(\eta \in N, m \in N_0^\eta \) and \(k \in R_+^\eta \). Also let \(b \in C - [0], \delta \geq 0, 0 \leq \beta < p \), and \(f \in US_{\eta}(\delta, \beta, b) \) for 1 \(\leq j \leq \eta \). If
\[
0 \leq p + k(\beta - p) < p,
\]
then the integral operator \(\mathcal{G}_{\eta}(p,n,m,k)(z) \) is in the class \(\mathcal{K}_{\eta}(\tau, b) \) where
\[
\tau = p + k(\beta - p).
\]
For \((f_j + g)(z) = D^{m,\alpha}_{\lambda,l,p}f_j(z)\), we have

Corollary 4.3 Let \(\eta \in N, m = (m_1, \ldots, m_\eta) \in N^\eta_0\) and \(k = (k_1, \ldots, k_\eta) \in R^\eta_+\). Also let \(b \in \mathbb{C} \setminus \{0\}, \delta \geq 0, 0 \leq \beta < p\), and \(f_j \in U\mathcal{S}^{m,\alpha}_{\lambda,l,p}(\delta_j, \beta_j, b)\) for \(1 \leq j \leq \eta\). If

\[
0 \leq p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{4.3}
\]

then the integral operator \(I_{p,\eta, m, k}(z)\) is in the class \(\mathcal{K}^{p,n}(\tau, b)\) where

\[
\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).
\]

Corollary 4.4 Let \(\eta \in N, m = (m_1, \ldots, m_\eta) \in N^\eta_0\) and \(k = (k_1, \ldots, k_\eta) \in R^\eta_+\). Also let \(b \in \mathbb{C} \setminus \{0\}, \delta \geq 0, 0 \leq \beta < p\), and \(U\mathcal{K}^{m,\alpha,\beta,n}_{\lambda,l}(\delta_j, \beta_j, b)\) for \(1 \leq j \leq \eta\). If

\[
0 \leq p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p, \tag{4.4}
\]

then the integral operator \(G_{p,\eta, m, k}(z)\) is in the class \(\mathcal{K}^{p,n}(\tau, b)\) where

\[
\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).
\]

which are known results obtained by Guney and Bulut [2]. Further, if put \(p = 1\), we have

Corollary 4.5 Let \(\eta \in N, m = (m_1, \ldots, m_\eta) \in N^\eta_0\) and \(k = (k_1, \ldots, k_\eta) \in R^\eta_+\). Also let \(b \in \mathbb{C} \setminus \{0\}, \delta \geq 0, 0 \leq \beta < 1\), and \(f_j \in U\mathcal{S}^{1}_g(\delta, \beta, b)\) for \(1 \leq j \leq \eta\). If

\[
0 \leq 1 + \sum_{j=1}^{\eta} k_j (\beta_j - 1) < 1, \tag{4.5}
\]

then the integral operator \(I^{1,\alpha,\eta, m, k}_g(z)\) is in the class \(\mathcal{K}^{1}_g(\tau, b)\) where

\[
\tau = 1 + \sum_{j=1}^{\eta} k_j (\beta_j - 1).
\]

Corollary 4.6 Let \(\eta \in N, m = (m_1, \ldots, m_\eta) \in N^\eta_0\) and \(k = (k_1, \ldots, k_\eta) \in R^\eta_+\). Also let \(b \in \mathbb{C} \setminus \{0\}, \delta \geq 0, 0 \leq \beta < 1\), and \(f_j \in U\mathcal{S}^{1}_g(\delta, \beta, b)\) for \(1 \leq j \leq \eta\). If

\[
0 \leq 1 + \sum_{j=1}^{\eta} k_j (\beta_j - 1) < 1, \tag{4.6}
\]
then the integral operator \(G^{1,n,m,k}_g(z) \) is in the class \(K^1_g(\tau, b) \) where

\[
\tau = 1 + \sum_{j=1}^\eta k_j(\beta_j - 1).
\]

Upon setting \(g(z) = z^p/(1 - z) \), we have

Corollary 4.7 Let \(\eta \in \mathbb{N}, m = (m_1, \ldots, m_\eta) \in \mathbb{N}_0^\eta \) and \(k = (k_1, \ldots, k_\eta) \in \mathbb{R}^\eta_+ \). Also let \(b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p \), and \(f_j \in \mathcal{US}^p(\delta, \beta, b) \) for \(1 \leq j \leq \eta \). If

\[
0 \leq p + \sum_{j=1}^\eta k_j(\beta_j - p) < p.
\] (4.7)

then the integral operator \(G^{p,n,m,k}_g(z) \) is in the class \(K^p(\tau, b) \) where

\[
\tau = p + \sum_{j=1}^\eta k_j(\beta_j - p).
\]

Corollary 4.8 Let \(\eta \in \mathbb{N}, m = (m_1, \ldots, m_\eta) \in \mathbb{N}_0^\eta \) and \(k = (k_1, \ldots, k_\eta) \in \mathbb{R}^\eta_+ \). Also let \(b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p \), and \(f_j \in \mathcal{US}^p(\delta, \beta, b) \) for \(1 \leq j \leq \eta \). If

\[
0 \leq p + \sum_{j=1}^\eta k_j(\beta_j - p) < p.
\] (4.8)

then the integral operator \(G^{p,n,m,k}_g(z) \) is in the class \(K^p(\tau, b) \) where

\[
\tau = p + \sum_{j=1}^\eta k_j(\beta_j - p).
\]

Upon setting \(g(z) = z^p/(1 - z) \) and \(\delta = 0 \), we have

Corollary 4.9 Let \(\eta \in \mathbb{N}, m = (m_1, \ldots, m_\eta) \in \mathbb{N}_0^\eta \) and \(k = (k_1, \ldots, k_\eta) \in \mathbb{R}^\eta_+ \). Also let \(b \in \mathbb{C} - \{0\}, 0 \leq \beta < p \), and \(f_j \in \mathcal{US}^p(0, \beta, b) \) for \(1 \leq j \leq \eta \). If

\[
0 \leq p + \sum_{j=1}^\eta k_j(\beta_j - p) < p.
\] (4.9)

then the integral operator \(G^{p,n,m,k}_g(z) \) is in the class \(K^p(\tau, b) \) where

\[
\tau = p + \sum_{j=1}^\eta k_j(\beta_j - p).
\]
Corollary 4.10 Let \(\eta \in \mathbb{N}, m = (m_1, ..., m_\eta) \in \mathbb{N}_0^\eta \) and \(k = (k_1, ..., k_\eta) \in \mathbb{R}_+^\eta \). Also let \(b \in \mathbb{C} - \{0\}, \delta \geq 0, 0 \leq \beta < p \), and \(f_j \in \mathcal{US}^p(0, \beta, b) \) for \(1 \leq j \leq \eta \). If

\[
0 \leq p + \sum_{j=1}^{\eta} k_j (\beta_j - p) < p,
\]

then the integral operator \(G^{p, \eta, m, k}(z) \) is in the class \(\mathcal{K}^p(\tau, b) \) where

\[
\tau = p + \sum_{j=1}^{\eta} k_j (\beta_j - p).
\]

References

DOI: 10.7862/rf.2015.1

Jyoti Aggarwal - corresponding author
e-mail: maths.jyoti86@gmail.com

Rachana Mathur
e-mail: rachnamathur@rediffmail.com

Department of Mathematics,
Govt. Dungar (P.G.) College,
Bikaner, India

Received 28.06.2014