Journal of Mathematics and Applications

The reticulation of residuated lattices induced by fuzzy prime spectrum

Shokoofeh Ghorbani

Submitted by: Jan Stankiewicz

ABSTRACT: In this paper, we use the fuzzy prime spectrum to define the reticulation $(L(A), \lambda)$ of a residuated lattice A. We obtain some related results. In particular, we show that the lattices of fuzzy filters of a residuated lattice A and L(A) are isomorphic and the fuzzy prime spectrum of A and L(A) are homomorphic topological space.

AMS Subject Classification: 03G25, 54B35, 03E72. Key Words and Phrases: Residuated lattice, Reticulation, Fuzzy filters, Fuzzy prime spectrum

1 Introduction

M. Ward and R.P. Dilworth [12] introduced the concept of residuated lattices as generalization of ideal lattices of rings. These algebras have been widely studied (See [1], [2] and [6]).

The reticulation was first defined by simmons([10]) for commutative ring and L. Leustean made this construction for BL-algebras ([7]). C. Mureson defined the reticulations for residuated lattices ([8]). The reticulation of an algebra A is a pair $(L(A), \lambda)$ consisting of a bounded distributive lattice L(A) and a surjective $\lambda : A \to L(A)([8])$. Hence we can transfer many properties between A and L(A).

The concept of fuzzy sets were introduced by Zadeh in 1965 ([13]). This concept was applied to residuated lattices and proposed the notions of fuzzy filters and prime fuzzy filters in a residuated lattice ([3], [4] and [14]). We defined and studied fuzzy prime spectrum of a residuated lattice in ([5]).

In this paper, we use fuzzy prime spectrum to define the congruence relation \cong on a residuated lattice A. Then we will show that A/\cong is a bounded distributive lattice and $(A/\cong, \pi)$ is a reticulation of A. We will investigate some related results. Also, we obtain the relation between the reticulation of a residuated lattice induced by fuzzy prime spectrum and the reticulation of a residuated lattice which is defined in ([8]).

COPYRIGHT © by Publishing Department Rzeszów University of Technology P.O. Box 85, 35-959 Rzeszów, Poland

2 Preliminaries

We recall some definitions and theorems which will be needed in this paper.

Definition 2.1. ([1], [11]) A residuated lattice is an algebraic structure $(A, \land, \lor, \rightarrow, *, 0, 1)$ such that

(1) $(A, \wedge, \vee, 0, 1)$ is a bounded lattice with the least element 0 and the greatest element 1,

(2) (A, *, 1) is a commutative monoid where 1 is a unit element,

(3) $x * y \le z$ iff $x \le y \to z$, for all $x, y, z \in A$.

In the rest of this paper, we denote the residuated lattice $(A, \land, \lor, *, \rightarrow, 0, 1)$ by A.

Proposition 2.2. ([6], [11]) Let A be a residuated lattice. Then we have the following properties: for all $x, y, z \in A$,

(1) $x \le y$ if and only if $x \to y = 1$, (2) $x * y \le x \land y \le x, y$, (3) $x * (y \lor z) = (x * y) \lor (x * z)$.

Definition 2.3. ([6], [11]) Let F be a non-empty subset of a residuated lattice A. F is called a *filter* if

(1) $1 \in F$, (2) if $x, x \to y \in F$, then $y \in F$, for all $x, y \in A$. *F* is called *proper*, if $F \neq A$.

Theorem 2.4. ([6], [11]) A non-empty subset F of a residuated lattice A is a filter if and only if

(1) $x, y \in F$ implies $x * y \in F$, (2) if $x \leq y$ and $x \in F$, then $y \in F$.

Definition 2.5. ([6]) Let X be a subset of a residuated lattice A. The smallest filter of A which contains X is said to be the *filter generated* by X and will be denoted by $\langle X \rangle$.

Proposition 2.6. ([6]) Let X be a non-empty subset of a residuated lattice A. Then $\langle X \rangle = \{a \in A : a \ge x_1 * \ldots * x_n \text{ for some } x_1, \ldots, x_n \in X\}.$

Definition 2.7. ([6], [11]) A proper filter F of a residuated lattice A is called *prime* filter, if for all $x, y \in A$, $x \lor y \in A$, implies $x \in A$ or $y \in A$.

Proposition 2.8. ([9]) (The prime filter theorem) Let A be a residuated lattice, F be a filter of A and $a \in A \setminus F$. Then there exists a prime filter of A that includes F and does not contain a.

Definition 2.9. ([13]) Let X be a non-empty subset. A fuzzy set in X is a mapping

24

 $\mu: X \longrightarrow [0,1]$. For $t \in [0,1]$, the set $\mu_t = \{x \in X : \mu(x) \ge t\}$ is called a *level subset* of μ . We call that μ is *proper*, if it has more two distinct values.

Definition 2.10. Let X, Y be non-empty sets and $f: X \to Y$ be a function. Let μ be a fuzzy set in X and ν be a fuzzy set in Y. Then $f(\mu)$ is a fuzzy set in Y defined by

$$f(\mu)(y) = \begin{cases} \sup\{\mu(x) : x \in f^{-1}(y)\} & if \quad f^{-1}(y) \neq \emptyset \\ 0 & if \quad f^{-1}(y) = \emptyset \end{cases}$$

for all $y \in Y$ and $f^{-1}(\nu)$ is a fuzzy set in X defined by $f^{-1}(\nu)(x) = \nu(f(x))$ for all $x \in X$.

Definition 2.11. Let X be a lattice. A fuzzy set μ is called a *fuzzy lattice filter* in X if it satisfies: for all $x, y \in X$, (1) $\mu(x) \leq \mu(1)$,

(2) $min\{\mu(x),\mu(y)\} \le \mu(x \land y).$

The set of all fuzzy lattice filter in X is denoted by $\mathcal{FL}(X)$.

Definition 2.12. ([3], [14]) Let A be a residuated lattice. A fuzzy set μ is called a *fuzzy filter* in A if it satisfies: for all $x, y \in A$, $(fF1) \ \mu(x) \le \mu(1)$, $(fF4) \ min\{\mu(x), \mu(x \to y)\} \le \mu(y)$. The set of all fuzzy filter in A is denoted by $\mathcal{F}(A)$.

Theorem 2.13. ([3], [14]) Let A be a residuated lattice. A fuzzy set μ in A is a fuzzy filter if and only if it satisfies: for all $x, y \in A$, $(fF1) \ x \leq y \text{ imply } \mu(x) \leq \mu(y)$, $(fF2) \ min\{\mu(x), \mu(y)\} \leq \mu(x * y)$.

Proposition 2.14. ([3]) Let μ be a fuzzy filter of A. If $\mu(x \to y) = \mu(1)$, then $\mu(x) \le \mu(y)$, for any $x, y \in A$.

Definition 2.15. Let μ be a fuzzy set in a residuated lattice A. The smallest fuzzy filter in A which contains μ is said to be the *fuzzy filter generated* by μ and will be denoted by $\langle \mu \rangle$.

Proposition 2.16. Let μ be a fuzzy set of a residuated lattice A. Then $\langle \mu \rangle (x) = \sup\{\min\{\mu(a_1),\ldots,\mu(a_n)\}: x \ge a_1 \ast \ldots \ast a_n \text{ for some } a_1,\ldots,a_n \in X\}$, for all $x \in A$.

Definition 2.17. ([5]) Let μ be a proper fuzzy filter in a residuated lattice A. μ is called a *fuzzy prime filter* if $\mu(x \vee y) \leq \max\{\mu(x), \mu(y)\}$ for all $x, y \in A$.

Theorem 2.18. ([5]) A proper subset P of a residuated lattice A is a prime filter of A if and only if χ_P is a fuzzy prime filter in A.

Theorem 2.19. ([5]) Let A and A' be residuated lattices and $f : A \to A'$ be an epimorphism. If μ is a fuzzy prime filter in A which is constant on ker(f), then $f(\mu)$ is a fuzzy prime filter in A'.

Theorem 2.20. ([5]) Let A and A' be residuated lattices and $f : A \to A'$ be a homomorphism. If ν is a fuzzy prime filter in A', then $f^{-1}(\nu)$ is a fuzzy prime filter in A.

Notation: ([5]) We shall denote the set of all fuzzy prime filter μ in a residuated lattice A such that $\mu(1) = 1$ by Fspec(A). For each fuzzy set ν in A, define $\mathcal{C}(\nu) = \{\mu \in Fspec(A) : \nu \leq \mu\}$. Let $\mu = \chi_{\{a\}}$ for $a \in A$. We shall denote $\mathcal{C}(\mu)$ by $\mathcal{C}(a)$ for all $a \in A$. Thus $\mathcal{C}(a) = \{\mu \in Fspec(A) : \mu(a) = 1\}$.

Proposition 2.21 ([5]) Let μ, ν be fuzzy sets in a residuated lattice A and $a, b \in A$. Then

 $\begin{array}{l} (1) \ \mu \leq \nu \ \text{imply} \ \mathcal{C}(\nu) \subseteq \mathcal{C}(\mu) \subseteq Fspec(A). \\ (2) \ \mathcal{C}(\bigcup_{i \in I} \nu_i) = \bigcap_{i \in I} \mathcal{C}(\nu_i). \\ (3) \ \mathcal{C}(\mu) \cup \mathcal{C}(\nu) \subseteq \mathcal{C}(<\mu > \cap <\nu >). \\ (4) \ \mathcal{C}(a \wedge b) = \mathcal{C}(a) \cup \mathcal{C}(b), \\ (5) \ \mathcal{C}(\chi_A) = \bigcap_{a \in A} \mathcal{C}(a). \end{array}$

Theorem 2.22.([5]) Let $\mathcal{V}(a) = Fspec(A) \setminus \mathcal{C}(a)$ and $\mathcal{B} = {\mathcal{V}(a) : a \in A}$. Then \mathcal{B} is a base for a topology on Fspec(A). The topological space Fspec(A) is called *fuzzy* spectrum of A.

3 The reticulation of residuated lattices

Definition 3.1. Let *A* be a residuated lattice. Define

 $a \cong b$ if and only if $\mathcal{C}(a) = \mathcal{C}(b)$,

for all $a, b \in A$. Hence $a \cong b$ iff for any $\mu \in Fspec(A)$, $(\mu(a) = 1$ iff $\mu(b) = 1)$.

Theorem 3.2. The relation \cong is a congruence relation on a residuated lattice A with respect to $*, \wedge$ and \vee .

Proof: It is clear that \cong is an equivalence relation on A. Suppose that $a \cong b$ and $c \cong d$ where $a, b, c, d \in A$. We will show that $a * c \cong b * d$, $a \wedge c \cong b \wedge d$ and $a \vee c \cong b \vee d$. (1) Let $\mu \in \mathcal{C}(a * c)$. So $\mu(a * c) = 1$. By Proposition 2.2 part (2) and Theorem 2.13, we have $1 = \mu(a * c) \leq \mu(a), \mu(c)$. We get that $\mu(a) = \mu(c) = 1$. By assumption, $\mu(b) = \mu(d) = 1$. Since $b * d \leq b * d$, then $d \leq b \to (b * d)$ by Definition 2.1 part (3). We obtain that $1 = \mu(d) \leq \mu(b \to b * d)$ by Theorem 2.13. Since μ is a fuzzy filter in A, we have $1 = \min\{\mu(b), \mu(b \to b * d)\} \leq \mu(b * d)$. Then $\mu(b * d) = 1$, that is $\mu \in \mathcal{C}(b * d)$. Hence $\mathcal{C}(a * c) \subseteq \mathcal{C}(b * d)$. Similarly, we can show that $\mathcal{C}(b * d) \subseteq \mathcal{C}(a * c)$. Therefore $a * c \cong b * d$. The Reticulation of Residuated Lattices Induced ...

(2) Let $a \wedge c \cong b \wedge d$ and $\mu \in \mathcal{C}(a \wedge c)$. Thus $\mu(a \wedge c) = 1$. Since $a \wedge c \leq a, c$, then $1 = \mu(a \wedge c) \leq \mu(a), \mu(c)$ by Theorem 2.13. By assumption $\mu(b) = \mu(d) = 1$. Since μ is a fuzzy filter in A and $b * d \leq b \wedge d$, then $1 = \min\{\mu(b), \mu(d)\} \leq \mu(b * d) \leq \mu(b \wedge d)$ by Theorem 2.13. Hence $\mu(b \wedge d) = 1$ and then $\mathcal{C}(a \wedge c) \subseteq \mathcal{C}(b \wedge d)$. Similarly, we can show that $\mathcal{C}(b \wedge d) \subseteq \mathcal{C}(a \wedge c)$. Therefor $a \wedge c \cong b \wedge d$.

(3) Let $a \lor c \cong b \lor d$ and $\mu \in \mathcal{C}(a \lor b)$. Then $\mu(a \lor b) = 1$. Since μ is a fuzzy prime filter in A, we have $\mu(a) = 1$ or $\mu(b) = 1$. By assumption $\mu(c) = 1$ or $\mu(d) = 1$. Hence $\mu(c \lor d) = \max\{\mu(c), \mu(d)\} = 1$. We obtain that $\mu \in \mathcal{C}(c \lor d)$ and then $\mathcal{C}(a \lor b) \subseteq \mathcal{C}(c \lor d)$. Similarly, we can prove that $\mathcal{C}(c \lor d) \subseteq \mathcal{C}(a \lor b)$. Hence $a \lor c \cong b \lor d$.

Notation: Let \cong be a the congruence relation on residuated lattice A which is defined in Definition 3.1. For all $a \in A$, the equivalence class of a is denoted by [a], that is $[a] = \{b \in A : a \cong b\}$. The set of all equivalence classes is denoted by A/\cong .

Theorem 3.3. The algebra $(A \cong, \land, \lor, [0], [1])$ is a bounded lattice, where

 $[a] \lor [b] = [a \lor b]$ and $[a] \land [b] = [a \land b]$

for all $a, b \in A$.

Proof: By Theorem 3.2, the operation \land and \lor are well defined. The rest of the proof is routine.

Example 3.4. Consider the residuated lattice A with the universe $\{0, a, b, c, d, 1\}$. Lattice ordering is such that 0 < a, b < c < 1, 0 < b < d < 1 but $\{a, b\}$ and $\{c, d\}$ are incomparable. The operations of * and \rightarrow are given by the tables below :

*	0	a	b	c	d	1	\rightarrow	0	a	b	c	d	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1
a	0	a	0	a	0	a	a	d	1	d	1	d	1
b	0	0	0	0	b	b	b	c	c	1	1	1	1
c	0	a	0	a	b	c	c	b	c	d	1	d	1
d	0	0	b	b	d	d	d	a	a	c	c	1	1
1	0	a	b	c	d	1	1	0	a	b	c	d	1

Consider $0 \le \nu_1(0) = \nu_1(a) = \nu_1(b) = \nu_1(c) < \nu_1(d) = \nu_1(1) = 1$ and $0 \le \nu_2(0) = \nu_2(b) = \nu_2(d) < \nu_2(c) = \nu_2(c) = \nu_2(1) = 1$. Then $Fspec(A) = \{\nu_1, \nu_2\}$. We obtain that [0] = [b], [a] = [c]. Therefore $A/\cong \{[0], [a], [d], [1]\}$ where [0] < [a], [d] < 1 but $\{[a], [d]\}$ are incomparable.

Lemma 3.5. Let A be a residuated lattice and $a, b \in A$. Then (i) $[a] \leq [b]$ if and only if $\mathcal{C}(b) \subseteq \mathcal{C}(a)$, (ii) if $a \leq b$, then $[a] \leq [b]$, (iii) $[a \wedge b] = [a * b]$. **Proof:** (i) By Theorem 3.3 and Proposition 2.21 parts (1) and (4), we have $[a] \leq [b]$ iff $[a] \wedge [b] = [a]$ iff $[a \wedge b] = [a]$ iff $\mathcal{C}(a) = \mathcal{C}(a \wedge b) = \mathcal{C}(a) \cup \mathcal{C}(b)$ iff $\mathcal{C}(b) \subseteq \mathcal{C}(a)$. (ii) If $a \leq b$, then $\mathcal{C}(a) \subseteq \mathcal{C}(b)$. We obtain that $[a] \leq [b]$ by (i).

(iii) We will show that $\mathcal{C}(a * b) = \mathcal{C}(a \wedge b)$. Let $\mu \in \mathcal{C}(a * b)$. Then $\mu(a * b) = 1$. By Proposition 2.2 part (2) and Theorem 2.13, $\mu(a * b) \leq \mu(a \wedge b)$. We get that $\mu(a \wedge b) = 1$ and then $\mu \in \mathcal{C}(a \wedge b)$. Hence $\mathcal{C}(a * b) \subseteq \mathcal{C}(a \wedge b)$.

Conversely, let $\mu \in \mathcal{C}(a \wedge b)$. Then $\mu(a \wedge b) = 1$. Since $a \wedge b \leq a, b$, then $\mu(a) = \mu(b) = 1$ by Theorem 2.13. Since $b \leq a \rightarrow (a * b)$ and μ is a fuzzy filter in A,

$$1 = \min\{\mu(a), \mu(b)\} \le \min\{\mu(a), \mu(a \to (a * b))\} \le \mu(a * b).$$

Hence $\mu(a * b) = 1$ and then $\mu \in \mathcal{C}(a * b)$. We get that $\mathcal{C}(a \wedge b) \subseteq \mathcal{C}(a * b)$. Therefor $[a \wedge b] = [a * b]$.

Theorem 3.6. The bounded lattice $(A \cong, \land, \lor, [0], [1])$ is distributive.

Proof: Let $a, b, c \in A$. By Lemma 3.5 and Proposition 2.2 part (3),

$$\begin{aligned} [a] \land ([b] \lor [c]) &= [a \land (b \lor c)] = [a \ast (b \lor c)] \\ &= [(a \ast b) \lor (a \ast c)] = [a \ast b] \lor [a \ast c] \\ &= [a \land b] \lor [a \land c] = ([a] \land [b]) \lor ([a] \land [c]). \end{aligned}$$

Definition 3.7. Let A be a residuated lattice and $\pi : A \to A/\cong$ be that canonical surjective map defined by $\pi(a) = [a]$. Then $(A/\cong, \pi)$ is called *the reticulation* of residuated lattice induced by fuzzy filters.

Lemma 3.8. Let A_1 and A_2 be residuated lattices and $f : A_1 \to A_2$ be a homomorphism of residuated lattices. Then $\mathcal{C}(a) = \mathcal{C}(b)$ implies $\mathcal{C}(f(a)) = \mathcal{C}(f(b))$, for any $a, b \in A_1$.

Proof: Suppose that $\mathcal{C}(a) = \mathcal{C}(b)$ where $a, b \in A_1$ and $\nu \in \mathcal{C}(f(a))$. Then $\nu \in Fspec(A_2)$ and $\nu(f(a)) = 1$. By Theorem 2.20, we have $f^{-1}(\nu) \in Fspec(A_1)$ and $f^{-1}(\nu)(a) = \nu(f(a)) = 1$. Thus $f^{-1}(\nu) \in \mathcal{C}(a) = \mathcal{C}(b)$. We get that $\nu(f(b)) = f^{-1}(\nu)(b) = 1$ and then $\nu \in \mathcal{C}(f(b))$. Hence $\mathcal{C}(f(a)) \subseteq \mathcal{C}(f(b))$. Similarly, we can show that $\mathcal{C}(f(b)) \subseteq \mathcal{C}(f(a))$.

In the following theorem, we will define a functor from the category of residuated lattices to the category of bounded distributive lattices.

Theorem 3.9. Let A_1 and A_2 be residuated lattices and $f : A_1 \to A_2$ be a homomorphism of residuated lattices. Then $\overline{f} : A_1 / \cong \to A_2 / \cong$ is defined by $\overline{f}([a]) = [f(a)]$ is a homomorphism of lattices.

Proof: Let [a] = [b]. By Lemma 3.5 part (i), we obtain that $\mathcal{C}(a) = \mathcal{C}(b)$. By Lemma 3.8, $\mathcal{C}(f(a)) = \mathcal{C}(f(b))$. We have [f(a)] = [f(b)] by Lemma 3.5 part (i). So \overline{f} is well defined. Now, Let $a, b \in A_1$. Since f is a homomorphism of residuated lattices, then

The Reticulation of Residuated Lattices Induced ...

$$\bar{f}([a] \wedge [b]) = \bar{f}([a \wedge b]) = [f(a \wedge b)] = [f(a)] \wedge [f(b)] = \bar{f}([a]) \wedge \bar{f}([b]).$$

Similarly, we can show that $\overline{f}([a] \lor [b]) = \overline{f}([a]) \lor \overline{f}([b])$. Also, $\overline{f}([0]) = [f(0)] = [0]$ and $\overline{f}([1]) = [f(1)] = [1]$. Hence \overline{f} is a homomorphism of lattices.

Lemma 3.10. Let μ be a fuzzy filter in a residuated lattice A and $a, b \in A$ such that [a] = [b]. Then $\mu(a) = \mu(b)$.

Proof: Suppose that μ is a fuzzy filter in A such that $\mu(a) \neq \mu(b)$. Then $\mu(a) < \mu(b)$ or $\mu(b) < \mu(a)$. Let $\mu(a) < \mu(b)$. Put $F = \{x \in A : \mu(x) \ge \mu(b)\}$, i.e. $F = \mu_{\mu(b)}$. Hence F is a filter of A such that $a \notin F$. Define $J = \langle F \cup \{b\} \rangle$. Then J is a filter of A. We shall show that $a \notin J$. Suppose that $a \in J$. By Proposition 2.6, there exist $y_1, \ldots, y_n \in F \cup \{b\}$ such that $y_1 * \ldots * y_n \le a$. If $y_i = b$ for some $1 \le i \le n$, then $y_1 * \ldots * y_{i-1} * y_{i+1} \ldots * y_n * b \le a$. Hence $y_1 * \ldots * y_{i-1} * y_{i+1} \ldots * y_n \le b \to a$. Since F is a filter, we have $b \to a \in F$, that is $\mu(b \to a) \ge \mu(b)$. So $\mu(b) = \min\{\mu(b), \mu(b \to a)\} \le \mu(a)$ which is a contradiction. Now, suppose that $y_i \in F$ for all $1 \le i \le n$. Thus $y_1 * \ldots * y_n \in F$. We get that $a \in F$ which is a contradiction. Hence $a \notin J$ and J is a proper filter. By Proposition 2.8, there exists a prime filter P such that $J \subseteq P$ and $a \notin P$. By Theorem 2.18, χ_P is a fuzzy prime filter in A such that $\chi_P(b) = 1$ and $\chi_P(a) \ne 1$. We obtain that $\chi_P \in C(b)$ but $\chi_P \notin C(a)$ which is a contradiction. Hence $\mu(a) = \mu(b)$.

Theorem 3.11. Let μ be a fuzzy filter in a residuated lattice L. Then $\pi(\mu)$ is a fuzzy lattice filter in A/\cong and $\pi^{-1}(\pi(\mu)) = \mu$.

Proof: Let $[a], [b] \in A/\cong$. Then $\pi(a) = [a]$ and $\pi(b) = [b]$. Since π is a homomorphism, we have $[a] \wedge [b] = [a \wedge b] = \pi(a \wedge b)$. We get that $a \wedge b = \pi^{-1}(x \wedge y)$. We have

$$\begin{aligned} \pi(\mu)([a] \wedge [b]) &= \sup\{\mu(z) : z \in \pi^{-1}[a \wedge b]\} \\ &\geq \sup\{\mu(x \wedge y) : x \in \pi^{-1}([a]), y \in \pi^{-1}([b])\} \\ &= \sup\{\min\{\mu(x), \mu(y)\} : x \in \pi^{-1}([a]), y \in \pi^{-1}([b])\} \\ &= \min\{\sup\{\mu(x) : x \in \pi^{-1}([a])\}, \sup\{\mu(b) : y \in \pi^{-1}([b])\}\} \\ &= \min\{\pi(\mu)(a), \pi(\mu)(b)\}. \end{aligned}$$

Let $[a] \leq [b]$. Then $\pi(a) \leq \pi(b)$. We shall show that $\pi(\mu)([a]) \leq \pi(\mu)([b])$. Suppose that $\pi(\mu)[a] > \pi(\mu)[b]$. Then there exists $x_0 \in \pi^{-1}([a])$ such that $\pi(x_0) = a$ and $\mu(x_0) > \sup\{\mu(y) : y \in \pi^{-1}(b)\}$. We have $\mu(y) \leq \mu(x_0)$ for all $y \in \pi^{-1}(b)$. Let $y \in \pi^{-1}(b)$ be arbitrary. Since π is a lattice homomorphism, then $[b] = [a] \lor [b] =$ $\pi(x_0) \lor \pi(y) = \pi(x_0 \lor y)$. Hence $x_0 \lor y \in \pi^{-1}(b)$. Therefore $\mu(x_0 \lor y) < \mu(x_0)$. By Definition 2.17, $\mu(x_0 \lor y) \geq \max\{\mu(x_0), \mu(y)\} = \mu(x_0)$ which is a contradiction. Hence $\pi(\mu)$ is a fuzzy lattice filter in $A \bowtie B$ Lemma 3. 10, we have $\pi^{-1}(\pi(\mu))(a) = \pi(\mu)(\pi(a)) = \pi(\mu)[a] = \sup\{\mu(x) : x \in \pi^{-1}([a])\} = \sup\{\mu(x) : \pi(x) = [a]\} = \mu(a)$. **Theorem 3.12.** Let ν be a fuzzy lattice filter in a lattice A/\cong . Then $\pi^{-1}(\nu)$ is a fuzzy filter in A and $\pi(\pi^{-1}(\nu)) = \nu$.

Proof: Let $x, y \in A$. By Lemma 3.5 part (iii), we have $\pi^{-1}(\nu)(x * y) = \nu(\pi(x * y)) = \nu([x * y]) = \nu([x \land y]) = \nu([x \land y]) = \nu([x \land y]) \geq \min\{\nu([x]), \nu([y])\} = \min\{\pi^{-1}(\nu)(x), \pi^{-1}(\nu)(y)\}$. Suppose that $x \leq y$. By Lemma 3.5 part (ii), we have $[x] \leq [y]$. Since ν is a fuzzy lattice filter in A / \cong , we have $\nu([x]) \leq \nu([y])$, that is $\pi^{-1}(\nu)(x) \leq \pi^{-1}(\nu)(y)$. By Lemma 3.10, we obtain that $\pi(\pi^{-1}(\nu))[x] = \sup\{\pi^{-1}(\nu)(y) : y \in \pi^{-1}([x])\} = \sup\{\pi^{-1}(\nu)(y) : \pi(y) = [x]\} = \sup\{\pi^{-1}(\nu)(y) : [y] = [x]\} = \nu([x]). \blacksquare$

Proposition 3.13. Let μ and ν be fuzzy filters in a residuated lattice A. Then $\nu \leq \mu$ if and only if $\pi(\nu) \leq \pi(\mu)$.

Proof: Suppose that $\nu \leq \mu$. Then $\pi(\nu)([x]) = \sup\{\nu(y) : y \in \pi^{-1}([x])\} \leq \sup\{\mu(y) : y \in \pi^{-1}([x])\} = \pi(\mu)([x])$. Conversely, let $\pi(\nu) \leq \pi(\mu)$. Then $\nu(a) = \pi^{-1}(\pi(\nu))(a) = \pi(\nu)(\pi(a)) \leq \pi(\mu)(\pi(a)) = \pi^{-1}(\pi(\mu))(a) = \mu(a)$.

Theorem 3.14. There is a lattice isomorphism between the lattices $\mathcal{F}(A)$ and $\mathcal{FL}(A/\cong)$.

Proof: Define $\varphi : \mathcal{F}(A) \to \mathcal{FL}(A/\cong)$ by $\varphi(\mu) = \pi(\mu)$ and $\psi : \mathcal{F}(L/\equiv) \to \mathcal{F}(L)$ by $\psi(\nu) = \pi^{-1}(\nu)$. By Theorems 3.11 and 3.12 φ and ψ are well defined and bijection. By the above Proposition φ is a lattice homomorphism. Hence ϕ is an isomorphism of lattices.

Theorem 3.15. Let μ be a fuzzy prime filter in a residuated lattice A. Then $\pi(\mu)$ is a fuzzy prime filter in A/\cong .

Proof: Since μ is a fuzzy prime filter in A, then μ is proper. So $\mu(0) \neq \mu(1)$. By Lemma 3.10, $\pi(\mu)(0) = \sup\{\mu(x) : x \in \pi^{-1}([0])\} = \sup\{\mu(x) : [x] = [0]\} = \mu(0) = 0$ and $\pi(\mu)(1) = \sup\{\mu(x) : x \in \pi^{-1}([1])\} = \sup\{\mu(x) : [x] = [1]\} = \mu(1) = 1$. Hence $\pi(\mu)$ is proper. We have $\pi(\mu)([x \lor y]) = \sup\{\mu(z) : z \in \pi^{-1}([x \lor y])\} = \sup\{\mu(x) : [z] = [x \lor y]\} = \mu(x \lor y) = \max\{\mu(x), \mu(y)\}$ Also, we have $\pi(\mu)[x] = \sup\{\mu(a) : a \in \pi^{-1}([x])\}$. = $\sup\{\mu(a) : [a] = [x]\} = \mu(x)$. Similarly, we can show that $\pi(\mu)[y] = \mu(y)$. We obtain that $\pi(\mu)(x \lor y) = \mu(x \lor y) = \max\{\mu(x), \mu(y)\} = \max\{\pi(\mu)(x), \pi(\mu)(y)\}$ and then $\pi(\mu)$ is a fuzzy prime filter in $A \cong \mathbb{I}$

Theorem 3.16. Let ν be a fuzzy prime filter in a lattice A/\cong . Then $\pi^{-1}(\nu)$ is a fuzzy prime filter in A.

Proof: By assumption ν is proper. Hence $\nu([0]) \neq \nu([1])$. We have $\pi^{-1}(\nu)(0) = \nu(\pi(0)) = \nu([0])$ and $\pi^{-1}(\nu)(1) = \nu(\pi(1)) = \nu([1])$. Hence $\pi^{-1}(\nu)(0) \neq \pi^{-1}(\nu)(1)$. That is $\pi^{-1}(\nu)$ is proper. Also, we have $\pi^{-1}(\nu)(x \lor y) = \nu(\pi(x \lor y)) = \nu([x \lor y]) = \nu([x] \lor [y]) = \max\{\nu([x]), \nu([y])\} = \max\{\pi^{-1}(\nu)(x), \pi^{-1}(\nu)(y)\}$.

Theorem 3.17. There exists a homomorphism between topological Space Fspec(A) and $Fspec(A) \cong$).

Proof: Consider φ in Theorem 3.14. The restriction φ to Fspec(A) is denoted by $\overline{\varphi}$. By Theorems 3.15 and 3.16, $\overline{\varphi} : Fspec(A) \to Fspec(A/\equiv)$ is a bijective. We will show that $\overline{\varphi}$ is continuous and closed. Let $\mathcal{C}([a])$ be an arbitrary closed base set. Then

$$\begin{split} \bar{\varphi}^{-1}(\mathcal{C}([a]) &= \{\mu \in Fspec(A) : \bar{\varphi}(\mu) \in \mathcal{C}([a])\} \\ &= \{\mu \in Fspec(A) : \pi(\mu) \in \mathcal{C}([a])\} \\ &= \{\mu \in Fspec(A) : \pi(\mu)[a] = 1\} \\ &= \{\mu \in Fspec(A) : \mu(a) = 1\} = \mathcal{C}(a). \end{split}$$

Hence φ is continuous. Also, we have

$$\begin{split} \bar{\varphi}(\mathcal{C}(a)) &= \{\varphi(\mu) : \mu \in Fspec(A), \mu \in \mathcal{C}(a)\} \\ &= \{\pi(\mu) : \mu \in Fspec(A), \mu \in \mathcal{C}(a)\} \\ &= \{\pi(\mu) : \mu \in Fspec(A), \mu(a) = 1\} \\ &= \{\nu \in Fspec(A/\cong) : \nu([a]) = 1\} = \mathcal{C}([a]). \end{split}$$

Hence φ is closed.

Let A be a residuated lattice. For any $a, b \in A$ define $a \equiv b$ iff for any $P \in Spec(A)$, $(a \in P \text{ iff } b \in P)$. Then \equiv is a congruence relation on A respect to $*, \land$ and \lor . Let us denot by \bar{a} the equivalence class of $a \in A$ and let A / \equiv be the quotient set. We denote $\lambda : A \to A / \equiv$ the canonical surjective defined by $\lambda(a) = \bar{a}$. Then $(A / \equiv, \lor, \land, 0, 1)$ is a bounded distributive lattice and $(A / \equiv, \lambda)$ is a reticulation of A (See [8]).

Theorem 3.18. Let A be a residuated lattice. Then the congruence relation \cong is equal to the congruence relation \equiv on A.

Proof: Let $a, b \in A$ such that $a \cong b$. We have $(\mu(a) = 1 \text{ iff } \mu(b) = 1)$ for any $\mu \in Fspec(A)$. Suppose that $P \in Spec(A)$. By Theorem 2.18, χ_P is a fuzzy prime filter. Hence $\chi_P(a) = 1$ iff $\chi_P(b) = 1$. We get that $a \in P$ iff $b \in P$. Hence $a \equiv b$ and then $\cong \subseteq \equiv$.

Conversely, let $a \equiv b$ and $\mu \in Fspec(A)$ such that $\mu(a) = 1$. We get that $a \in \mu_1$ and μ_1 is a proper filter of A. Hence $\mu_1 \in Spec(A)$. Since $a \equiv b$, then we have $b \in \mu_1$. We obtain that $\mu(b) = 1$. Similarly, we can prove that if $\mu(b) = 1$, then $\mu(b) = 1$. So $a \cong b$. Therefor $\equiv \subseteq \cong .\blacksquare$

References

[1] T.S. Blyth, M. F. Janowitz, Residuation Theory, Pergamon Press, 1972.

- [2] K. Blount, C. Tsinakies, The structure of residuated lattices, Internat. J. Algebra Comput., 13(2003), No. 4, 437-461.
- [3] Sh. Ghorbani, A. Hasankhani, Fuzzy Convex Subalgebras of Commutative Residuated Lattices, Iran. J. Fuzzy Syst., Vol. 7, No. 2(2010), 41-54.
- [4] Sh. Ghorbani, A. Hasankhani, Uniform topology on a residuated lattice induced by fuzzy filters, Int. Rev. Fuzzy Math. 4(2009), 45-62.
- [5] Sh. Ghorbani, Fuzzy spectrum of residuated lattices, Journal of Advanced Research in Pure Mathematics 3(2011), 56 - 68.
- [6] T. Kowalski, H. Ono, Residuated lattices: An algebraic glimpse at logics without contraction, monograph, March, 2001.
- [7] L. Leustean, The prime and maximal spectra and the reticulation of BL- algebras, Cent. Eur. J. Math., No. 3 (2003), 382-397.
- [8] C. Muresan, The reticulation of a residuated lattice, Bull. Math. Soc. Sci. Math. Roumania, Tome 51(99) No. 1, (2008), 47-65.
- [9] D. Piciu, Algebras of fuzzy logic, Editura Universitaria, Craiova, 2007.
- [10] H. Simmons, Reticulated rings, J. Algebra 66(1980), 169-192.
- [11] E. Turunen, Mathematics behind fuzzy logic, Advances in Soft Comput- ing, Physica-Verlag, Heidelberg, 1999.
- [12] M. Ward, R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45(1939), 335-354.
- [13] L. A. Zadeh, Fuzzy sets, Inf. and Control 8(1965), 338-353.
- [14] J. L. Zhang, H. J. Zhou, Fuzzy filters on the residuated lattices, New Math. Nat. Comput. 1(2006), 11-28.

DOI: 10.7862/rf.2012.2

Shokoofeh Ghorbani

email: sh.ghorbani@uk.ac.ir Department of Mathematics, Bam Higher Education Complexes, Kerman, Iran Received 14.04.2011, Revisted 26.01.2012

32