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1 Introduction

M. Ward and R.P. Dilworth [12] introduced the concept of residuated lattices as
generalization of ideal lattices of rings. These algebras have been widely studied (See
[1], [2] and [6]).
The reticulation was first defined by simmons([10]) for commutative ring and L.
Leustean made this construction for BL-algebras ([7]). C. Mureson defined the reticu-
lations for residuated lattices ([8]). The reticulation of an algebra A is a pair (L(A), λ)
consisting of a bounded distributive lattice L(A) and a surjective λ : A→ L(A)([8]).
Hence we can transfer many properties between A and L(A).
The concept of fuzzy sets were introduced by Zadeh in 1965 ([13]). This concept
was applied to residuated lattices and proposed the notions of fuzzy filters and prime
fuzzy filters in a residuated lattice ([3], [4] and [14]). We defined and studied fuzzy
prime spectrum of a residuated lattice in ([5]).
In this paper, we use fuzzy prime spectrum to define the congruence relation ∼= on a
residuated lattice A. Then we will show that A/ ∼= is a bounded distributive lattice
and (A/ ∼=, π) is a reticulation of A. We will investigate some related results. Also, we
obtain the relation between the reticulation of a residuated lattice induced by fuzzy
prime spectrum and the reticulation of a residuated lattice which is defined in ([8]).
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2 Preliminaries

We recall some definitions and theorems which will be needed in this paper.

Definition 2.1. ([1], [11]) A residuated lattice is an algebraic structure (A,∧,∨,→
, ∗, 0, 1) such that
(1) (A,∧,∨, 0, 1) is a bounded lattice with the least element 0 and the greatest ele-
ment 1,
(2) (A, ∗, 1) is a commutative monoid where 1 is a unit element,
(3) x ∗ y ≤ z iff x ≤ y → z, for all x, y, z ∈ A.

In the rest of this paper, we denote the residuated lattice (A,∧,∨, ∗,→, 0, 1) by A.

Proposition 2.2. ([6], [11]) Let A be a residuated lattice. Then we have the follow-
ing properties: for all x, y, z ∈ A,
(1) x ≤ y if and only if x→ y = 1,
(2) x ∗ y ≤ x ∧ y ≤ x, y,
(3) x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z).

Definition 2.3. ([6], [11]) Let F be a non-empty subset of a residuated lattice A. F
is called a filter if
(1) 1 ∈ F ,
(2) if x, x→ y ∈ F , then y ∈ F , for all x, y ∈ A.
F is called proper, if F 6= A.

Theorem 2.4. ([6], [11]) A non-empty subset F of a residuated lattice A is a filter
if and only if
(1) x, y ∈ F implies x ∗ y ∈ F ,
(2) if x ≤ y and x ∈ F , then y ∈ F .

Definition 2.5. ([6]) Let X be a subset of a residuated lattice A. The smallest filter
of A which contains X is said to be the filter generated by X and will be denoted by
< X >.

Proposition 2.6. ([6]) Let X be a non-empty subset of a residuated lattice A. Then
< X >= {a ∈ A : a ≥ x1 ∗ . . . ∗ xn for some x1, . . . , xn ∈ X}.

Definition 2.7. ([6], [11]) A proper filter F of a residuated lattice A is called prime
filter, if for all x, y ∈ A, x ∨ y ∈ A, implies x ∈ A or y ∈ A.

Proposition 2.8. ([9]) (The prime filter theorem) Let A be a residuated lattice, F
be a filter of A and a ∈ A\F . Then there exists a prime filter of A that includes F
and does not contain a.

Definition 2.9. ([13]) Let X be a non-empty subset. A fuzzy set in X is a mapping
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µ : X −→ [0, 1]. For t ∈ [0, 1], the set µt = {x ∈ X : µ(x) ≥ t} is called a level subset
of µ. We call that µ is proper, if it has more two distinct values.

Definition 2.10. Let X, Y be non-empty sets and f : X → Y be a function. Let µ
be a fuzzy set in X and ν be a fuzzy set in Y . Then f(µ) is a fuzzy set in Y defined by

f(µ)(y) =

{
sup{µ(x) : x ∈ f−1(y)} if f−1(y) 6= ∅

0 if f−1(y) = ∅

for all y ∈ Y and f−1(ν) is a fuzzy set in X defined by f−1(ν)(x) = ν(f(x)) for all
x ∈ X.

Definition 2.11. Let X be a lattice. A fuzzy set µ is called a fuzzy lattice filter in
X if it satisfies: for all x, y ∈ X,
(1) µ(x) ≤ µ(1),
(2) min{µ(x), µ(y)} ≤ µ(x ∧ y).
The set of all fuzzy lattice filter in X is denoted by FL(X).

Definition 2.12. ([3], [14]) Let A be a residuated lattice. A fuzzy set µ is called a
fuzzy filter in A if it satisfies: for all x, y ∈ A,
(fF1) µ(x) ≤ µ(1),
(fF4) min{µ(x), µ(x→ y)} ≤ µ(y).
The set of all fuzzy filter in A is denoted by F(A).

Theorem 2.13. ([3], [14]) Let A be a residuated lattice. A fuzzy set µ in A is a
fuzzy filter if and only if it satisfies: for all x, y ∈ A,
(fF1) x ≤ y imply µ(x) ≤ µ(y),
(fF2) min{µ(x), µ(y)} ≤ µ(x ∗ y).

Proposition 2.14. ([3]) Let µ be a fuzzy filter of A. If µ(x → y) = µ(1), then
µ(x) ≤ µ(y), for any x, y ∈ A.

Definition 2.15. Let µ be a fuzzy set in a residuated lattice A. The smallest fuzzy
filter in A which contains µ is said to be the fuzzy filter generated by µ and will be
denoted by < µ >.

Proposition 2.16. Let µ be a fuzzy set of a residuated lattice A. Then < µ > (x) =
sup{min{µ(a1), . . . , µ(an)} : x ≥ a1 ∗ . . . ∗ an for some a1, . . . , an ∈ X}, for all x ∈ A.

Definition 2.17. ([5]) Let µ be a proper fuzzy filter in a residuated lattice A. µ is
called a fuzzy prime filter if µ(x ∨ y) ≤ max{µ(x), µ(y)} for all x, y ∈ A.

Theorem 2.18. ([5]) A proper subset P of a residuated lattice A is a prime filter of
A if and only if χP is a fuzzy prime filter in A.
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Theorem 2.19. ([5]) Let A and A′ be residuated lattices and f : A → A′ be an
epimorphism. If µ is a fuzzy prime filter in A which is constant on ker(f), then f(µ)
is a fuzzy prime filter in A′.

Theorem 2.20. ([5]) Let A and A′ be residuated lattices and f : A → A′ be a ho-
momorphism. If ν is a fuzzy prime filter in A′, then f−1(ν) is a fuzzy prime filter in A.

Notation: ([5]) We shall denote the set of all fuzzy prime filter µ in a residu-
ated lattice A such that µ(1) = 1 by Fspec(A). For each fuzzy set ν in A, define
C(ν) = {µ ∈ Fspec(A) : ν ≤ µ}. Let µ = χ{a} for a ∈ A. We shall denote C(µ) by
C(a) for all a ∈ A. Thus C(a) = {µ ∈ Fspec(A) : µ(a) = 1}.

Proposition 2.21 ([5]) Let µ, ν be fuzzy sets in a residuated lattice A and a, b ∈ A.
Then
(1) µ ≤ ν imply C(ν) ⊆ C(µ) ⊆ Fspec(A).
(2) C(

⋃
i∈I

νi) =
⋂
i∈I
C(νi).

(3) C(µ) ∪ C(ν) ⊆ C(< µ > ∩ < ν >).
(4) C(a ∧ b) = C(a) ∪ C(b),
(5) C(χA) =

⋂
a∈A
C(a).

Theorem 2.22.([5]) Let V(a) = Fspec(A)\C(a) and B = {V(a) : a ∈ A}. Then B
is a base for a topology on Fspec(A). The topological space Fspec(A) is called fuzzy
spectrum of A.

3 The reticulation of residuated lattices

Definition 3.1. Let A be a residuated lattice. Define

a ∼= b if and only if C(a) = C(b),

for all a, b ∈ A. Hence a ∼= b iff for any µ ∈ Fspec(A), (µ(a) = 1 iff µ(b) = 1).

Theorem 3.2. The relation ∼= is a congruence relation on a residuated lattice A with
respect to ∗, ∧ and ∨.

Proof: It is clear that ∼= is an equivalence relation on A. Suppose that a ∼= b and
c ∼= d where a, b, c, d ∈ A. We will show that a∗c ∼= b∗d, a∧c ∼= b∧d and a∨c ∼= b∨d.
(1) Let µ ∈ C(a ∗ c). So µ(a ∗ c) = 1. By Proposition 2.2 part (2) and Theorem 2.13,
we have 1 = µ(a ∗ c) ≤ µ(a), µ(c). We get that µ(a) = µ(c) = 1. By assumption,
µ(b) = µ(d) = 1. Since b ∗ d ≤ b ∗ d, then d ≤ b → (b ∗ d) by Definition 2.1 part (3).
We obtain that 1 = µ(d) ≤ µ(b → b ∗ d) by Theorem 2.13. Since µ is a fuzzy filter
in A, we have 1 = min{µ(b), µ(b → b ∗ d)} ≤ µ(b ∗ d). Then µ(b ∗ d) = 1, that is
µ ∈ C(b ∗d). Hence C(a ∗ c) ⊆ C(b ∗d). Similarly, we can show that C(b ∗d) ⊆ C(a ∗ c).
Therefore a ∗ c ∼= b ∗ d.
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(2) Let a ∧ c ∼= b ∧ d and µ ∈ C(a ∧ c). Thus µ(a ∧ c) = 1. Since a ∧ c ≤ a, c, then
1 = µ(a ∧ c) ≤ µ(a), µ(c) by Theorem 2.13. By assumption µ(b) = µ(d) = 1. Since µ
is a fuzzy filter in A and b ∗ d ≤ b ∧ d, then 1 = min{µ(b), µ(d)} ≤ µ(b ∗ d) ≤ µ(b ∧ d)
by Theorem 2.13. Hence µ(b∧ d) = 1 and then C(a∧ c) ⊆ C(b∧ d). Similarly, we can
show that C(b ∧ d) ⊆ C(a ∧ c). Therefor a ∧ c ∼= b ∧ d.
(3) Let a ∨ c ∼= b ∨ d and µ ∈ C(a ∨ b). Then µ(a ∨ b) = 1. Since µ is a fuzzy
prime filter in A, we have µ(a) = 1 or µ(b) = 1. By assumption µ(c) = 1 or
µ(d) = 1. Hence µ(c ∨ d) = max{µ(c), µ(d)} = 1. We obtain that µ ∈ C(c ∨ d)
and then C(a∨ b) ⊆ C(c∨ d). Similarly, we can prove that C(c∨ d) ⊆ C(a∨ b). Hence
a ∨ c ∼= b ∨ d. �

Notation: Let ∼= be a the congruence relation on residuated lattice A which is de-
fined in Definition 3.1. For all a ∈ A, the equivalence class of a is denoted by [a], that
is [a] = {b ∈ A : a ∼= b}. The set of all equivalence classes is denoted by A/ ∼=.

Theorem 3.3. The algebra (A/ ∼=,∧,∨, [0], [1]) is a bounded lattice, where

[a] ∨ [b] = [a ∨ b] and [a] ∧ [b] = [a ∧ b]

for all a, b ∈ A.

Proof: By Theorem 3.2, the operation ∧ and ∨ are well defined. The rest of the
proof is routine. �

Example 3.4. Consider the residuated lattice A with the universe {0, a, b, c, d, 1}.
Lattice ordering is such that 0 < a, b < c < 1, 0 < b < d < 1 but {a, b} and {c, d} are
incomparable. The operations of ∗ and → are given by the tables below :

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

Consider 0 ≤ ν1(0) = ν1(a) = ν1(b) = ν1(c) < ν1(d) = ν1(1) = 1 and 0 ≤ ν2(0) =
ν2(b) = ν2(d) < ν2(c) = ν2(c) = ν2(1) = 1. Then Fspec(A) = {ν1, ν2}. We obtain
that [0] = [b], [a] = [c]. Therefore A/ ∼== {[0], [a], [d], [1]} where [0] < [a], [d] < 1 but
{[a], [d]} are incomparable.

Lemma 3.5. Let A be a residuated lattice and a, b ∈ A. Then
(i) [a] ≤ [b] if and only if C(b) ⊆ C(a),
(ii) if a ≤ b, then [a] ≤ [b],
(iii) [a ∧ b] = [a ∗ b].
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Proof: (i) By Theorem 3.3 and Proposition 2.21 parts (1) and (4), we have [a] ≤ [b]
iff [a] ∧ [b] = [a] iff [a ∧ b] = [a] iff C(a) = C(a ∧ b) = C(a) ∪ C(b) iff C(b) ⊆ C(a).
(ii) If a ≤ b, then C(a) ⊆ C(b). We obtain that [a] ≤ [b] by (i).
(iii) We will show that C(a ∗ b) = C(a ∧ b). Let µ ∈ C(a ∗ b). Then µ(a ∗ b) = 1.
By Proposition 2.2 part (2) and Theorem 2.13, µ(a ∗ b) ≤ µ(a ∧ b). We get that
µ(a ∧ b) = 1 and then µ ∈ C(a ∧ b). Hence C(a ∗ b) ⊆ C(a ∧ b).
Conversely, let µ ∈ C(a∧b). Then µ(a∧b) = 1. Since a∧b ≤ a, b, then µ(a) = µ(b) = 1
by Theorem 2.13. Since b ≤ a→ (a ∗ b) and µ is a fuzzy filter in A,

1 = min{µ(a), µ(b)} ≤ min{µ(a), µ(a→ (a ∗ b))} ≤ µ(a ∗ b).

Hence µ(a ∗ b) = 1 and then µ ∈ C(a ∗ b). We get that C(a ∧ b) ⊆ C(a ∗ b). Therefor
[a ∧ b] = [a ∗ b]. �

Theorem 3.6. The bounded lattice (A/ ∼=,∧,∨, [0], [1]) is distributive.

Proof: Let a, b, c ∈ A. By Lemma 3.5 and Proposition 2.2 part (3),

[a] ∧ ([b] ∨ [c]) = [a ∧ (b ∨ c)] = [a ∗ (b ∨ c)]
= [(a ∗ b) ∨ (a ∗ c)] = [a ∗ b] ∨ [a ∗ c]
= [a ∧ b] ∨ [a ∧ c] = ([a] ∧ [b]) ∨ ([a] ∧ [c]).�

Definition 3.7. Let A be a residuated lattice and π : A → A/ ∼= be that canonical
surjective map defined by π(a) = [a]. Then (A/ ∼=, π) is called the reticulation of
residuated lattice induced by fuzzy filters.

Lemma 3.8. Let A1 and A2 be residuated lattices and f : A1 → A2 be a homomor-
phism of residuated lattices. Then C(a) = C(b) implies C(f(a)) = C(f(b)), for any
a, b ∈ A1.

Proof: Suppose that C(a) = C(b) where a, b ∈ A1 and ν ∈ C(f(a)). Then ν ∈
Fspec(A2) and ν(f(a)) = 1. By Theorem 2.20, we have f−1(ν) ∈ Fspec(A1) and
f−1(ν)(a) = ν(f(a)) = 1. Thus f−1(ν) ∈ C(a) = C(b). We get that ν(f(b)) =
f−1(ν)(b) = 1 and then ν ∈ C(f(b)). Hence C(f(a)) ⊆ C(f(b)). Similarly, we can
show that C(f(b)) ⊆ C(f(a)).�

In the following theorem, we will define a functor from the category of residuated
lattices to the category of bounded distributive lattices.

Theorem 3.9. Let A1 and A2 be residuated lattices and f : A1 → A2 be a homo-
morphism of residuated lattices. Then f̄ : A1/ ∼=→ A2/ ∼= is defined by f̄([a]) = [f(a)]
is a homomorphism of lattices.

Proof: Let [a] = [b]. By Lemma 3.5 part (i), we obtain that C(a) = C(b). By Lemma
3.8, C(f(a)) = C(f(b)). We have [f(a)] = [f(b)] by Lemma 3.5 part (i). So f̄ is well
defined. Now, Let a, b ∈ A1. Since f is a homomorphism of residuated lattices, then
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f̄([a] ∧ [b]) = f̄([a ∧ b]) = [f(a ∧ b)] = [f(a)] ∧ [f(b)] = f̄([a]) ∧ f̄([b]).

Similarly, we can show that f̄([a] ∨ [b]) = f̄([a]) ∨ f̄([b]). Also, f̄([0]) = [f(0)] = [0]
and f̄([1]) = [f(1)] = [1]. Hence f̄ is a homomorphism of lattices.�

Lemma 3.10. Let µ be a fuzzy filter in a residuated lattice A and a, b ∈ A such that
[a] = [b]. Then µ(a) = µ(b).

Proof: Suppose that µ is a fuzzy filter in A such that µ(a) 6= µ(b). Then µ(a) < µ(b)
or µ(b) < µ(a). Let µ(a) < µ(b). Put F = {x ∈ A : µ(x) ≥ µ(b)}, i.e. F = µµ(b).
Hence F is a filter of A such that a 6∈ F . Define J =< F ∪ {b} >. Then J is a filter
of A. We shall show that a 6∈ J . Suppose that a ∈ J . By Proposition 2.6, there exist
y1, ..., yn ∈ F ∪ {b} such that y1 ∗ ... ∗ yn ≤ a. If yi = b for some 1 ≤ i ≤ n, then
y1∗...∗yi−1∗yi+1...∗yn∗b ≤ a. Hence y1∗...∗yi−1∗yi+1...∗yn ≤ b→ a. Since F is a filter,
we have b → a ∈ F , that is µ(b → a) ≥ µ(b). So µ(b) = min{µ(b), µ(b → a)} ≤ µ(a)
which is a contradiction. Now, suppose that yi ∈ F for all 1 ≤ i ≤ n. Thus
y1 ∗ ... ∗ yn ∈ F . We get that a ∈ F which is a contradiction. Hence a 6∈ J and
J is a proper filter. By Proposition 2.8, there exists a prime filter P such that J ⊆ P
and a 6∈ P . By Theorem 2.18, χP is a fuzzy prime filter in A such that χP (b) = 1
and χP (a) 6= 1. We obtain that χP ∈ C(b) but χP 6∈ C(a) which is a contradiction.
Hence µ(a) = µ(b). �

Theorem 3.11. Let µ be a fuzzy filter in a residuated lattice L. Then π(µ) is a
fuzzy lattice filter in A/ ∼= and π−1(π(µ)) = µ.

Proof: Let [a], [b] ∈ A/ ∼=. Then π(a) = [a] and π(b) = [b]. Since π is a homomor-
phism, we have [a] ∧ [b] = [a ∧ b] = π(a ∧ b). We get that a ∧ b = π−1(x ∧ y). We
have

π(µ)([a] ∧ [b]) = sup{µ(z) : z ∈ π−1[a ∧ b]}
≥ sup{µ(x ∧ y) : x ∈ π−1([a]), y ∈ π−1([b])}
= sup{min{µ(x), µ(y)} : x ∈ π−1([a]), y ∈ π−1([b])}
= min{sup{µ(x) : x ∈ π−1([a])}, sup{µ(b) : y ∈ π−1([b])}}

= min{π(µ)(a), π(µ)(b)}.

Let [a] ≤ [b]. Then π(a) ≤ π(b). We shall show that π(µ)([a]) ≤ π(µ)([b]). Suppose
that π(µ)[a] > π(µ)[b]. Then there exists x0 ∈ π−1([a]) such that π(x0) = a and
µ(x0) > sup{µ(y) : y ∈ π−1(b)}. We have µ(y) ≤ µ(x0) for all y ∈ π−1(b). Let
y ∈ π−1(b) be arbitrary. Since π is a lattice homomorphism, then [b] = [a] ∨ [b] =
π(x0) ∨ π(y) = π(x0 ∨ y). Hence x0 ∨ y ∈ π−1(b). Therefore µ(x0 ∨ y) < µ(x0).
By Definition 2.17, µ(x0 ∨ y) ≥ max{µ(x0), µ(y)} = µ(x0) which is a contradic-
tion. Hence π(µ) is a fuzzy lattice filter in A/ ∼=. By Lemma 3. 10, we have
π−1(π(µ))(a) = π(µ)(π(a)) = π(µ)[a] = sup{µ(x) : x ∈ π−1([a])} = sup{µ(x) :
π(x) = [a]} = sup{µ(x) : [x] = [a]} = µ(a).�
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Theorem 3.12. Let ν be a fuzzy lattice filter in a lattice A/ ∼=. Then π−1(ν) is a
fuzzy filter in A and π(π−1(ν)) = ν.

Proof: Let x, y ∈ A. By Lemma 3.5 part (iii), we have π−1(ν)(x ∗ y) = ν(π(x ∗ y)) =
ν([x∗y]) = ν([x∧y]) = ν([x]∧[y]) ≥ min{ν([x]), ν([y])} = min{π−1(ν)(x), π−1(ν)(y)}.
Suppose that x ≤ y. By Lemma 3.5 part (ii), we have [x] ≤ [y]. Since ν is a fuzzy lat-
tice filter in A/ ∼=, we have ν([x]) ≤ ν([y]), that is π−1(ν)(x) ≤ π−1(ν)(y). By Lemma
3.10, we obtain that π(π−1(ν))[x] = sup{π−1(ν)(y) : y ∈ π−1([x])} = sup{π−1(ν)(y) :
π(y) = [x]} = sup{π−1(ν)(y) : [y] = [x]} = ν([x]).�

Proposition 3.13. Let µ and ν be fuzzy filters in a residuated lattice A. Then ν ≤ µ
if and only if π(ν) ≤ π(µ).

Proof: Suppose that ν ≤ µ. Then π(ν)([x]) = sup{ν(y) : y ∈ π−1([x])} ≤ sup{µ(y) :
y ∈ π−1([x])} = π(µ)([x]). Conversely, let π(ν) ≤ π(µ). Then ν(a) = π−1(π(ν))(a) =
π(ν)(π(a)) ≤ π(µ)(π(a)) = π−1(π(µ))(a) = µ(a).�

Theorem 3.14. There is a lattice isomorphism between the lattices F(A) and
FL(A/ ∼=).

Proof: Define ϕ : F(A) → FL(A/ ∼=) by ϕ(µ) = π(µ) and ψ : F(L/ ≡) → F(L) by
ψ(ν) = π−1(ν). By Theorems 3.11 and 3.12 ϕ and ψ are well defined and bijection.
By the above Proposition ϕ is a lattice homomorphism. Hence φ is an isomorphism
of lattices.�

Theorem 3.15. Let µ be a fuzzy prime filter in a residuated lattice A. Then π(µ)
is a fuzzy prime filter in A/ ∼=.

Proof: Since µ is a fuzzy prime filter in A, then µ is proper. So µ(0) 6= µ(1). By
Lemma 3.10, π(µ)(0) = sup{µ(x) : x ∈ π−1([0])} = sup{µ(x) : [x] = [0]} = µ(0) = 0
and π(µ)(1) = sup{µ(x) : x ∈ π−1([1])} = sup{µ(x) : [x] = [1]} = µ(1) = 1. Hence
π(µ) is proper. We have π(µ)([x ∨ y]) = sup{µ(z) : z ∈ π−1([x ∨ y])} = sup{µ(x) :
[z] = [x ∨ y]} = µ(x ∨ y) = max{µ(x), µ(y)} Also, we have π(µ)[x] = sup{µ(a) : a ∈
π−1([x])}. = sup{µ(a) : [a] = [x]} = µ(x). Similarly, we can show that π(µ)[y] = µ(y).
We obtain that π(µ)(x ∨ y) = µ(x ∨ y) = max{µ(x), µ(y)} = max{π(µ)(x), π(µ)(y)}
and then π(µ) is a fuzzy prime filter in A/ ∼=.�

Theorem 3.16. Let ν be a fuzzy prime filter in a lattice A/ ∼=. Then π−1(ν) is a
fuzzy prime filter in A.

Proof: By assumption ν is proper. Hence ν([0]) 6= ν([1]). We have π−1(ν)(0) =
ν(π(0)) = ν([0]) and π−1(ν)(1) = ν(π(1)) = ν([1]). Hence π−1(ν)(0) 6= π−1(ν)(1).
That is π−1(ν) is proper. Also, we have
π−1(ν)(x ∨ y) = ν(π(x ∨ y)) = ν([x ∨ y]) = ν([x] ∨ [y]) = max{ν([x]), ν([y])} =
max{π−1(ν)(x), π−1(ν)(y)}. �
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Theorem 3.17. There exists a homomorphism between topological Space Fspec(A)
and Fspec(A/ ∼=).

Proof: Consider ϕ in Theorem 3.14. The restriction ϕ to Fspec(A) is denoted by
ϕ̄. By Theorems 3.15 and 3.16, ϕ̄ : Fspec(A) → Fspec(A/ ≡) is a bijective. We
will show that ϕ̄ is continuous and closed. Let C([a]) be an arbitrary closed base set.
Then

ϕ̄−1(C([a]) = {µ ∈ Fspec(A) : ϕ̄(µ) ∈ C([a])}
= {µ ∈ Fspec(A) : π(µ) ∈ C([a])}
= {µ ∈ Fspec(A) : π(µ)[a] = 1}
= {µ ∈ Fspec(A) : µ(a) = 1} = C(a).

Hence ϕ is continuous. Also, we have

ϕ̄(C(a)) = {ϕ(µ) : µ ∈ Fspec(A), µ ∈ C(a)}
= {π(µ) : µ ∈ Fspec(A), µ ∈ C(a)}
= {π(µ) : µ ∈ Fspec(A), µ(a) = 1}

= {ν ∈ Fspec(A/ ∼=) : ν([a]) = 1} = C([a]).

Hence ϕ is closed.�

Let A be a residuated lattice. For any a, b ∈ A define a ≡ b iff for any P ∈ Spec(A),
(a ∈ P iff b ∈ P ). Then ≡ is a congruence relation on A respect to ∗, ∧ and ∨. Let us
denot by ā the equivalence class of a ∈ A and let A/ ≡ be the quotient set. We denote
λ : A→ A/ ≡ the canonical surjective defined by λ(a) = ā. Then (A/ ≡,∨,∧, 0, 1) is
a bounded distributive lattice and (A/ ≡, λ) is a reticulation of A (See [8]).

Theorem 3.18. Let A be a residuated lattice. Then the congruence relation ∼= is
equal to the congruence relation ≡ on A.

Proof: Let a, b ∈ A such that a ∼= b. We have (µ(a) = 1 iff µ(b) = 1) for any
µ ∈ Fspec(A). Suppose that P ∈ Spec(A). By Theorem 2.18, χP is a fuzzy prime
filter. Hence χP (a) = 1 iff χP (b) = 1. We get that a ∈ P iff b ∈ P . Hence a ≡ b and
then ∼=⊆≡.
Conversely, let a ≡ b and µ ∈ Fspec(A) such that µ(a) = 1. We get that a ∈ µ1 and
µ1 is a proper filter of A. Hence µ1 ∈ Spec(A) . Since a ≡ b, then we have b ∈ µ1.
We obtain that µ(b) = 1. Similarly, we can prove that if µ(b) = 1, then µ(b) = 1. So
a ∼= b. Therefor ≡⊆∼=.�
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