Supra b-compact and supra b-Lindelöf spaces

Jamal M. Mustafa

Abstract: In this paper we introduce the notion of supra b-compact spaces and investigate its several properties and characterizations. Also we introduce and study the notion of supra b-Lindelöf spaces.

AMS Subject Classification: 54D20

Keywords and Phrases: b-open sets, supra b-open sets, supra b-compact spaces and supra b-Lindelöf spaces

1. Introduction and preliminaries

In 1983, A. S. Mashhour et al. [3] introduced the supra topological spaces. In 1996, D. Andrijevic [1] introduced and studied a class of generalized open sets in a topological space called b-open sets. This type of sets discussed by El-Atike [2] under the name of γ-open sets. In 2010, O. R. Sayed et al. [4] introduced and studied a class of sets and maps between topological spaces called supra b-open sets and supra b-continuous functions respectively. Now we introduce the concepts of supra b-compact and supra b-Lindelöf spaces and investigate several properties for these concepts.

Throughout this paper (X, τ), (Y, ρ) and (Z, σ) (or simply X, Y and Z) denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of (X, τ), the closure and the interior of A in X are denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. The complement of A is denoted by $X - A$. In the space (X, τ), a subset A is said to be b-open [1] if $A \subseteq \text{Cl}(\text{Int}(A)) \cup \text{Int}(ext{Cl}(A))$. The family of all b-open sets of (X, τ) is denoted by $\text{BO}(X)$. A subcollection $\mu \subseteq 2^X$ is called a supra topology [3] on X if $X \in \mu$ and μ is closed under arbitrary union. (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) and the complement of a supra open set is called a supra closed set. The supra closure of a set A, denoted by $\text{Cl}^\mu(A)$, is the intersection of all supra closed sets including A. The supra interior of a set A, denoted by $\text{Int}^\mu(A)$, is the union of all supra open sets included in A. The supra topology μ on X is associated with the topology τ if $\tau \subseteq \mu$.
Definition 1.1 [4] Let \((X, \mu)\) be a supra topological space. A set \(A\) is called a supra \(b\)-open set if \(A \subseteq \text{Cl}^\mu(\text{Int}^\mu(A)) \cup \text{Int}^\mu(\text{Cl}^\mu(A))\). The complement of a supra \(b\)-open set is called a supra \(b\)-closed set.

Theorem 1.2 [4]. (i) Arbitrary union of supra \(b\)-open sets is always supra \(b\)-open.

(ii) Finite intersection of supra \(b\)-open sets may fail to be supra \(b\)-open.

Definition 1.3 [4] The supra \(b\)-closure of a set \(A\), denoted by \(\text{Cl}^\mu_b(A)\), is the intersection of supra \(b\)-closed sets including \(A\). The supra \(b\)-interior of a set \(A\), denoted by \(\text{Int}^\mu_b(A)\), is the union of supra \(b\)-open sets included in \(A\).

2. Supra \(b\)-compact and supra \(b\)-Lindelöf spaces

Definition 2.1 A collection \(\{U_\alpha : \alpha \in \Delta\}\) of supra \(b\)-open sets in a supra topological space \((X, \mu)\) is called a supra \(b\)-open cover of a subset \(B\) of \(X\) if \(B \subseteq \bigcup \{U_\alpha : \alpha \in \Delta\}\).

Definition 2.2 A supra topological space \((X, \mu)\) is called supra \(b\)-compact (resp. supra \(b\)-Lindelöf) if every supra \(b\)-open cover of \(X\) has a finite (resp. countable) subcover.

The proof of the following theorem is straightforward and thus omitted.

Theorem 2.3 If \(X\) is finite (resp. countable) then \((X, \mu)\) is supra \(b\)-compact (resp. supra \(b\)-Lindelöf) for any supra topology \(\mu\) on \(X\).

Definition 2.4 A subset \(B\) of a supra topological space \((X, \mu)\) is said to be supra \(b\)-compact (resp. supra \(b\)-Lindelöf) relative to \(X\) if, for every collection \(\{U_\alpha : \alpha \in \Delta\}\) of supra \(b\)-open subsets of \(X\) such that \(B \subseteq \bigcup \{U_\alpha : \alpha \in \Delta\}\), there exists a finite (resp. countable) subset \(\Delta_0\) of \(\Delta\) such that \(B \subseteq \bigcup \{U_\alpha : \alpha \in \Delta_0\}\).

Notice that if \((X, \mu)\) is a supra topological space and \(A \subseteq X\) then \(\mu_A = \{U \cap A : U \in \mu\}\) is a supra topology on \(A\).

\((A, \mu_A)\) is called a supra subspace of \((X, \mu)\).

Definition 2.5 A subset \(B\) of a supra topological space \((X, \mu)\) is said to be supra \(b\)-compact (resp. supra \(b\)-Lindelöf) if \(B\) is supra \(b\)-compact (resp. supra \(b\)-Lindelöf) as a supra subspace of \(X\).

Theorem 2.6 Every supra \(b\)-closed subset of a supra \(b\)-compact space \(X\) is supra \(b\)-compact relative to \(X\).

Prof: Let \(A\) be a supra \(b\)-closed subset of \(X\) and \(\bar{U}\) be a cover of \(A\) by supra \(b\)-open subsets of \(X\). Then \(\bar{U}^* = \bar{U} \cup \{X - A\}\) is a supra \(b\)-open cover of \(X\). Since \(X\) is supra \(b\)-compact, \(\bar{U}^*\) has a finite subcover \(\bar{U}^{**}\) for \(X\). Now \(\bar{U}^{**} - \{X - A\}\) is a finite subcover of \(\bar{U}\) for \(A\), so \(A\) is supra \(b\)-compact relative to \(X\). □
Theorem 2.7 Every supra b-closed subset of a supra b-Lindelöf space X is supra b-Lindelöf relative to X.

Prof: Similar to the proof of the above theorem. ■

Theorem 2.8 Every supra subspace of a supra topological space (X,μ) is supra b-compact relative to X if and only if every supra b-open subspace of X is supra b-compact relative to X.

Prof: \Rightarrow Is clear.

\Leftarrow Let Y be a supra subspace of X and let $\bar{U} = \{U_\alpha : \alpha \in \Delta\}$ be a cover of Y by supra b-open sets in X. Now let $V = \bigcup \bar{U}$, then V is a supra b-open subset of X, so it is supra b-compact relative to X. But \bar{U} is a cover of V so \bar{U} has a finite subcover \bar{U}^* for V. Then $V \subseteq \bigcup \bar{U}^*$ and therefore $V \subseteq \bigcup \bar{U}^*$. So \bar{U}^* is a finite subcover of \bar{U} for Y. Then Y is supra b-compact relative to X. ■

Theorem 2.9 Every supra subspace of a supra topological space (X,μ) is supra b-Lindelöf relative to X if and only if every supra b-open subspace of X is supra b-Lindelöf relative to X.

Prof: Similar to the proof of the above theorem. ■

For a family \tilde{A} of subsets of X, if all finite intersection of the elements of \tilde{A} are non-empty, we say that \tilde{A} has the finite intersection property.

Theorem 2.10 A supra topological space (X,μ) is supra b-compact if and only if every supra b-closed family of subsets of X having the finite intersection property, has a non-empty intersection.

Prof: \Rightarrow Let $\tilde{A} = \{A_\alpha : \alpha \in \Delta\}$ be a supra b-closed family of subsets of X which has the finite intersection property. Suppose that $\cap \{A_\alpha : \alpha \in \Delta\} \neq \phi$. Let $\bar{U} = \{X - A_\alpha : \alpha \in \Delta\}$ then \bar{U} is a supra b-open cover of X. Then \bar{U} has a finite subcover $\bar{U}^* = \{X - A_{\alpha_1}, X - A_{\alpha_2}, ..., X - A_{\alpha_n}\}$. Now $\tilde{A} = \{A_{\alpha_1}, A_{\alpha_2}, ..., A_{\alpha_n}\}$ is a finite subfamily of \tilde{A} with $\cap \{A_{\alpha_i} : i = 1, 2, ..., n\} = \phi$ which is a contradiction.

\Leftarrow Let $\bar{U} = \{U_\alpha : \alpha \in \Delta\}$ be a supra b-open cover of X. Suppose that \tilde{U} has no finite subcover. Now $\tilde{A} = \{X - U_\alpha : \alpha \in \Delta\}$ is a supra b-closed family of subsets of X which has the finite intersection property. So by assumption we have $\cap \{X - U_\alpha : \alpha \in \Delta\} \neq \phi$. Then $\cup \{U_\alpha : \alpha \in \Delta\} \neq X$ which is a contradiction. ■

The proof of the following theorem is straightforward and thus omitted.

Theorem 2.11 The finite (resp. countable) union of supra b-compact (resp. supra b-Lindelöf) sets relative to a supra topological space X is supra b-compact (resp. supra b-Lindelöf) relative to X.

Theorem 2.12 Let A be a supra b-compact (resp. supra b-Lindelöf) set relative to a supra topological space X and B be a supra b-closed subset of X. Then $A \cap B$ is supra b-compact (resp. supra b-Lindelöf) relative to X.
Definition 2.13 [4] Let (X, τ) and (Y, ρ) be two topological spaces and μ be an associated supra topology with τ. A function $f : (X, \tau) \rightarrow (Y, \rho)$ is called a supra b-continuous function if the inverse image of each supra open set in Y is a supra b-open set in X.

Theorem 2.14 A supra b-continuous image of a supra b-compact space is compact.

Prof: Similar to the proof of the above theorem.

Definition 2.16 Let (X, τ) and (Y, ρ) be two topological spaces and μ, η be associated supra topologies with τ and ρ respectively. A function $f : (X, \tau) \rightarrow (Y, \rho)$ is called a supra b-irresolute function if the inverse image of each supra b-open set in Y is a supra b-open set in X.

Theorem 2.17 If a function $f : X \rightarrow Y$ is supra b-irresolute and a subset B of X is supra b-compact relative to X, then $f(B)$ is supra b-compact relative to Y.

Prof: Similar to the proof of the above theorem.

Definition 2.19 [4]. A function $f : (X, \tau) \rightarrow (Y, \rho)$ is called a supra b-open function if the image of each open set in X is a supra b-open set in (Y, η).

The proof of the following theorem is straightforward and thus omitted.
Supra b-compact and supra b-Lindelöf spaces

Theorem 2.20 Let $f : (X, \tau) \to (Y, \rho)$ be a supra b-open surjection and η be a supra topology associated with ρ. If (Y, η) is supra b-compact (resp. supra b-Lindelöf) then (X, τ) is compact (resp. Lindelöf).

Definition 2.21 A subset F of a supra topological space (X, μ) is called supra b-F_σ-set if $F = \bigcup \{F_i : i = 1, 2, \ldots\}$ where F_i is a supra b-closed subset of X for each $i = 1, 2, \ldots$.

Theorem 2.22 A supra b-F_σ-set F of a supra b-Lindelöf space X is supra b-Lindelöf relative to X.

Prof: Let $F = \bigcup \{F_i : i = 1, 2, \ldots\}$ where F_i is a supra b-closed subset of X for each $i = 1, 2, \ldots$. Let \hat{U} be a cover of F by supra b-open sets in X, then \hat{U} is a cover of F_i for each $i = 1, 2, \ldots$ by supra b-open subsets of X. Since F_i is supra b-Lindelöf relative to X, \hat{U} has a countable subcover $\hat{U}_i = \{U_{i1}, U_{i2}, \ldots\}$ for F_i for each $i = 1, 2, \ldots$. Now $\bigcup \{\hat{U}_i : i = 1, 2, \ldots\}$ is a countable subcover of \hat{U} for F. So F is supra b-Lindelöf relative to X.

References

DOI: 10.7862/rf.2013.7

Jamal M. Mustafa
email: jjmrr971@yahoo.com
Department of Mathematics,
Al al-Bayt University, Mafraq, Jordan

Received 16.11.2011, Revised 1.12.2012, Accepted 25.10.2013