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1 Basic Notation and Equations

Let D ⊂ R3 be a finite domain bounded by a closed surface S of the class C2,α;
0 < α ≤ 1; D = D ∪ S, L = (0, e), L = [0, e], Ω = D × L be a cylinder in R4,
Ω = D × L.

A system of differential equations of dynamics for the hemitropic micropolar elastic
medium is of the form [1, 2]:

(µ+ α)∆u+ (λ+ µ− α) grad div u+ (v + η)∆ω

+ (δ + v − η) grad divω + 2α rotω +X(x, t) = ρ
∂2u

∂t2
,

(ν + β)∆ω − 4αω + (ε+ ν − β) grad divω + (v + η)∆u

+ (δ + v − η) grad div u+ 2α rotu+ 4η rotω

+ Y (x, t) = J ∂
2ω

∂t2
,

(1)

where ∆ is the three-dimensional Laplace operator; u(x, t) =
(u1, u2, u3) is the displacement vector; ω(x, t) = (ω1, ω2, ω3) is the vector of rota-
tion; x = (x1, x2, x3) is a point in R3; t is time; X(x, t) is the vector of body forces;
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Y (x, t) is the volumetrical moment; ρ is the medium density; J is a moment of in-
ertia, and λ, µ, α, ε, ν, β, v, η, δ are the known elastic constants satisfying the
following conditions: µ > 0, α > 0, 3λ + 2µ > 0, µν − v2 > 0, αβ − η2 > 0,
(3λ+ 2µ)(3ε+ 2ν)− (3δ + 2v)2 > 0.

For the sake of brevity, the basic equations will be written in a matrix form.
Towards this end, we adopt the following agreement: if we multiply the matrix A =
‖aij‖m×n of dimension n by the u = (u1, u2, . . . , un)-dimensional vector n, then the
vector is assumed to be a one-column matrix u = ‖ui‖n×1, and the product Au is an
m-dimensional vector.

The system (1) can be represented in a vector-matrix form as follows:

M(∂x)V (x, t) + F (x, t) = r
∂2V

∂t2
, (2)

where M(∂x) = ‖Mkj(∂x)‖6×6, and also

Mkj(∂x) = (µ+ α)δkj∆ + (λ+ µ− α)
∂2

∂xk∂xj
for k, j = 1, 2, 3,

Mkj(∂x) = (v + η)δkj∆ + (δ + v − η)
∂2

∂xk∂xj
− 2α

3∑
e=1

εkj
∂

∂xe
,

for k = 1, 2, 3, j = 4, 5, 6 and k = 4, 5, 6, j = 1, 2, 3;

Mkj(∂x) = ((ν + β)∆− 4α)δkj + (ε+ ν − β)
∂2

∂xk∂xj

− 4η

3∑
e=1

εkje
∂

∂xe
for k, j = 4, 5, 6;

δkj is the Kronecker symbol, εkje is the Levy-Civita symbol,

F (x, t) = (X(x, t), Y (x, t)) = (F1, F2, . . . , F6);

V (x, t) = (u(x, t), ω(x, t)) = (u1, u2, u3, ω1, ω2, ω3) = (v1, v2, . . . , v6);

r is the diagonal matrix of dimension 6 × 6; r = ‖rkj‖6×6, rkj = 0, where k 6= j,
rii = ρ for i = 1, 2, 3; rii = J for i = 4, 5, 6.

The force stress r(n)(x, t) = (r
(n)
1 (x, t), r

(n)
2 (x, t), r

(n)
3 (x, t)) and the moment stress

µ(n))(x, t) = (µ
(n)
1 (x, t), µ

(n)
2 (x, t), µ

(n)
3 (x, t)) at the point x and time t directed to

n = (n1, n2, n3) are defined by the formulas [1, 2]:

r
(n)
i = λni div u+ (µ+ α)

3∑
j=1

∂ui
∂xj

nj + (µ− α)

3∑
j=1

∂uj
∂xi

nj+

+δni divω + (v + η)

3∑
j=1

∂ωi
∂xj

nj + (v − η)

3∑
j=1

∂ωj
∂xi

nj
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+2α

3∑
k,j=1

εijkωknj , i = 1, 2, 3;

µ
(n)
i = δni div u+ (v + η)

3∑
j=1

∂ui
∂xj

nj + (v − η)

3∑
j=1

∂uj
∂xi

nj

+εni divω + (ν + β)

3∑
j=1

∂ωi
∂xj

nj + (ν − β)

3∑
j=1

∂ωj
∂xi

nj

+(v + η)

3∑
k,j=1

εjkiωknj + (v − η)

3∑
k,j=1

εijkωknj , i = 1, 2, 3.

We introduce a matrix differential operator of dimension 6× 6:

T (∂x, n(x)) = ‖Tkj(∂x, n(x))‖6×6,

Tkj(∂x, n(x)) = (µ+ α)δkj
∂

∂n(x)
+ (µ− α)nj

∂

∂xk

+ λnk
∂

∂xj
, k, j = 1, 2, 3;

Tkj(∂x, n(x)) = (v + η)δkj
∂

∂n(x)
+ (v − η)nj

∂

∂xk
+ δnk

∂

∂xj

− 2α

3∑
e=1

εkjene, k = 1, 2, 3, j = 4, 5, 6;

Tkj(∂x, n(x)) = (v + η)δkj
∂

∂n(x)
+ (v − η)nj

∂

∂xk

+ δnk
∂

∂xj
, k = 4, 5, 6, j = 1, 2, 3;

Tkj(∂x, n(x)) = (ν + β)δkj
∂

∂n(x)
+ (ν − β)nj

∂

∂xk
+ βnk

∂

∂xj

− 2ν

3∑
e=1

εkjene, k, j = 4, 5, 6.

T (∂x, n(x)) will be called a stress operator of the hemitropic theory of elasticity.

It is not difficult to check that

T (∂x, n(x))V = (r(n)(V ), µ(n)(V )).

Note that n(x) is an arbitrary unit vector at the point x. If x ∈ S, then n(x) is
the unit vector of the outer normal with respect to D.
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2 Statement of the Basic Problems. The Condi-
tions for the Given Vector-Functions

Let the hemitropic homogeneous elastic medium occupy the domain D. We con-
sider the following two basic problems: find in a cylinder Ω a regular vector V (x, t)
(x ∈ D, t ∈ L, Vi ∈ C1(Ω) ∩ C2(Ω), i = 1, 6) satisfying

1) the equation

∀(x, t) ∈ Ω : M(∂x)V (x, t)− r ∂
2V (x, t)

∂t2
= −F (x, t);

2) the initial conditions

∀x ∈ D : lim
t→0+

V (x, t) = ϕ(x), lim
t→0+

∂V (x, t)

∂t
= ψ(x);

3) one of the boundary conditions

∀(z, t) ∈ S × L : lim
D3x→z∈S

V (x, t) = 0, for the first problem,

∀(z, t) ∈ S × L : lim
D3x→z∈S

T (∂x, n(x))V (x, t) = 0,

for the second problem.

The first problem we denote by (I)F,ϕ,ψ, and the second one by (II)F,ϕ,ψ.
The given vector-functions F,ϕ, ψ are assumed to satisfy the following conditions:
1) F (·, ·) ∈ C2(Ω), and the third order derivatives belong to the class L2(D).

Moreover,

F |S = MF |S = 0, t ∈ L for the problem (I)F,ϕ,ψ

and

TF |S = 0, t ∈ L for the problem (II)F,ϕ,ψ;

2) ϕ ∈ C3(D), and the fourth order derivatives belong to the class L2(D). More-
over,

ϕ|S = Mϕ|S = 0, for the problem (I)F,ϕ,ψ

and

Tϕ|S = TMϕ|S = 0, for the problem (II)F,ϕ,ψ;

3) ψ ∈ C2(D), and the third order derivatives belong to the class L2(D). Moreover,

ψ|S = Mψ|S = 0, for the problem (I)F,ϕ,ψ

and

Tψ|S = 0, for the problem (II)F,ϕ,ψ.

The symbol ·|S denotes the narrowing to KS.
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3 Green’s Formulas. The Uniqueness of Regular
Solutions of the Problems Formulated Above

Let V (x) = (u, ω) and V ′(x) = (u′, ω′) be arbitrary six-component vectors of the
class C1(D) whose second derivatives belong to the class L2(D). Then the following
Green’s formulas are valid [3]:∫

D

(V ′M(∂x)V + E(V ′, V ))dx =

∫
S

V ′TV dS, (1)∫
D

(V ′M(∂x)V − VM(∂x)V ′)dx =

∫
S

(V ′TV − V TV ′)dS, (2)

where

E(V ′, V ) =

3∑
k,j=1

(
(µ+ α)u′kjukj + (µ− α)u′kjujk

+ (v + η)u′kjωkj + (v − η)u′kjωjk + (ν + β)ω′kjωkj

+ (ν − β)ω′kjωjk + (v + η)ω′kjukj + (v − η)ω′kjujk

+ δ(u′kkωjj + ukkω
′
jj) + λu′kkujj + εω′kkωjj

)
, (3)

where ukj =
∂uj

∂xk
−

3∑
e=1

εkjeωe, ωkj =
∂ωj

∂xk
. From (3) we have

E(V, V ) =
3λ+ 2µ

3

(
div u+

3δ + 2v

2λ+ 2µ
divω

)2

+

+
1

3

(
3ε+ 2ν − (3δ + 2v)2

3λ+ 2µ

)
(divω)2+

+
µ

2

∑
k 6=j=1

(∂uk
∂xj

+
∂uj
∂xk

+
v

µ

(∂ωk
∂xj

+
∂ωj
∂xk

))2

+

+
µ

3

3∑
k,j=1

(∂uk
∂xk
− ∂uj
∂xj

+
v

µ

(∂ωk
∂xk

− ∂ωj
∂xj

))2

+

+
(
ν − v2

µ

)(1

2

∑
k 6=j=1

(∂ωk
∂xj

+
∂ωj
∂xk

)2

+
1

3

3∑
k,j=1

(∂ωk
∂xk

− ∂ωj
∂xj

)2)
+

+
(
β − η2

α

)
(rotω)2 + α

(
rotu+

η

α
rotω − 2ω

)2

. (4)

From (3) and (4), on the basis of the conditions satisfying the elastic constants,
we can conclude that

E(V ′, V ) = E(V, V ′), E(V, V ) ≥ 0.

Let now prove the following
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Theorem 1 Problems (I)F,ϕ,ψ and (II)F,ϕ,ψ have no more than one solution.

Proof. We have to prove that the problems (I)0,0,0 and (II)0,0,0 have only zero
solutions. To this end, we apply formula (1) to the vectors V = V (x, t) and V ′ =
∂V (x,t)
∂t , where V (x, t) = (u(x, t), ω(x, t)) is a regular solution of the problem (I)0,0,0

or of the problem (II)0,0,0, and make use of the identities

V ′MV =
∂V

∂t
MV =

(∂u
∂t
,
∂ω

∂t

)
·
(
ρ
∂2u

∂t2
,J ∂

2ω

∂t2

)
=
ρ

2

∂

∂t

∣∣∣∂u
∂t

∣∣∣2 +
J
2

∂

∂t

∣∣∣∂ω
∂t

∣∣∣2;

E(V ′, V ) = E
(∂V
∂t
, V
)

=
1

2

∂

∂t
E(V, V ).

Then (1) takes the form

∂

∂t

∫
D

(ρ
2

∣∣∣∂u
∂t

∣∣∣2 +
J
2

∣∣∣∂ω
∂t

∣∣∣2 +
1

2
E(V, V )

)
dx =

∫
S

∂V

∂t
TV dS. (5)

By virtue of the boundary conditions, the right-hand side of (5) for the both
problems is equal to zero and, consequently,∫

D

(ρ
2

∣∣∣∂u
∂t

∣∣∣2 +
J
2

∣∣∣∂ω
∂t

∣∣∣2 +
1

2
E(V, V )

)
dx = const . (6)

Since this constant at the starting moment is equal to zero, it will remain unchanged

in a due course, and
∣∣∂u
∂t

∣∣2 = 0,
∣∣∂ω
∂t

∣∣2 = 0; E(V, V ) = 0 thus V = (u, ω) ≡ 0.

4 Green’s Tensors and the Problems for Eigenval-
ues

As we will see below, in investigating the above-formulated dynamical problems, of
great importance are the solutions of some special corresponding problems of statics
which are called the Green’s tensors.

The first Green’s tensor or the Green’s tensor of the first basic problem of statics

corresponding to the problem (I)F,ϕ,ψ is called the matrix
1

G(x, y) of dimension 6×6,
depending on two points x and y and satisfying the following conditions:

1) ∀x, y ∈ D, x 6= y: M(∂x)
1

G(x, y) = 0,

2) ∀z ∈ S, ∀y ∈ D :
1

G(z, y) = 0

3)
1

G(x, y) = Γ(x− y)− 1
g(x, y), x, y ∈ D,

where Γ(x− y) is the known matrix of fundamental solutions of the equation [3]

M(∂x)V (x) = 0, (7)
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and
1
g(x, y) is a regular solution (including x = y) of equation (7) in the domain D.

It is clear that the proof of the existence of
1

G(x, y) is reduced to the solvability of

the following first basic problem of statics for D: find a regular in D solution
1
g(x, y)

of equation (7), satisfying the boundary condition

∀z ∈ S, ∀y ∈ D :
1
g(z, y) = Γ(z − y).

The solvability of such a problem has been proved in [3].

The second Green’s tensor, or the Green’s tensor of the second basic problem of
statics in the domain D, corresponding to the problem (II)F,ϕ,ψ, cannot, generally
speaking, be defined analogously to the first tensor. Since the second basic problem

of statics is not always solvable [3], we, following to H. Weyl [4, 5], represent
2

G(x, y)
in the domain D in the form

2

G(x, y) = Π(x, y)− 2
g(x, y),

where Π(x, y) is the known matrix involving Γ(x−y) and the vectors of rigid displace-

ment, and
2
g(x, y) is a regular matrix in D, satisfying equation (7) and the boundary

condition

∀z ∈ S, ∀y ∈ D : lim
D3x→z∈S

T (∂x, n(x))
2
g(x, y) = T (∂z, n(z))Π(z, y).

It is shown that the necessary and sufficient condition for the obtained second problem

of statics is fulfilled and hence the existence of
2

G(x, y) is proved.

Relying on the results of [3, 6], we can show that the Green’s tensors possess the
following properties:

1)
k

G(x, y) =
k

G>(y, x), where “>” denotes transposition k = 1, 2;

2) ∀(x, y) ∈ D ×D :
k

Gmn(x, y) = O(|x− y|−1),

∂

∂xj

k

Gmn(x, y) = O(|x− y|−2), (8)

k = 1, 2; j = 1, 2, 3; m,n = 1, 6;

3) ∀(x, y) ∈ D ×D :
∂

∂xj

k

G(2)
mn(x, y) = O(ln |x− y|), (9)

j = 1, 2, 3; k = 1, 2; m,n = 1, 6;

4) ∀(x, y) ∈ D′ ×D :
∂2

∂xi∂xj

k

G(2)
mn(x, y) = O(|x− y|−1), (10)

k = 1, 2; j = 1, 2, 3; m,n = 1, 6,
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where |x − y| is the distance between the points x and y, D ′ ⊂ D is an arbitrary

closed domain, lying strictly in D, and
k

G(2)(x, y) is an iterated kernel for
k

G(x, y):

k

G(2)(x, y) =

∫
D

k

G(x, z)
k

G(z, y)dz, x 6= y, k = 1, 2.

We rewrite equation (2) as follows:

M̃(∂x)Ṽ (x, t)− ∂2Ṽ (x, t)

∂t2
= −F̃ (x, t),

where M̃ = κ−1Mκ−1, Ṽ = κV , F̃ = κ−1F , κ = ‖√rkj‖6×6.

Consider now two problems for eigen-values:

∀x ∈ D : M̃(∂x)
k

W (x) + γ
k

W (x) = 0, k = 1, 2;

∀z ∈ S : lim
D3x→z∈S

1

W (x) = 0, lim
D3x→z∈S

T (∂x, n(x))
2

W (x) = 0.

The first problem we denote by (I)γ and the second one by (II)γ . The eigen

vector-function
k

W (x) = (
k

W 1,
k

W 2, . . . ,
k

W 6), k = 1, 2 (not equal identically to zero) is

said to be regular, if
k

W i ∈ C1(D) ∩ C2(D), i = 1, 6; k = 1, 2.

It is not difficult to show [5] that the problems (I)γ and (II)γ are equivalent to
the following system of integral equations:

k

W (x) = γ

∫
D

k

K(x, y)
k

W (y)dy, x ∈ D, (11)

where
k

K(x, y) = κ
k

G(x, y)κ, k = 1, 2.

It follows from the above-mentioned properties of
k

G(x, y) that (11) is the inte-
gral equation with symmetric kernel of the class L2(D). Consequently, there exist a

countable system of eigen-numbers (
k
γn)∞n=1, |kγn| → ∞ as n → ∞, and the corre-

sponding orthonormalized in D system of eigen-vectors (
k

Wn(x))∞n=1, x ∈ D, k = 1, 2,
of equation (11) or of the problems (I)γ and (II)γ , respectively. It is easy to state

that all
1
γn > 0, while

2
γn ≥ 0, where

2
γ = 0 is the eigen sixth rank number, and

the corresponding vectors are those of the rigid displacement (χ(n)(x))6
n=1. In what

follows, it will be assumed that
2
γn = 0,

2

W (n) = χ(n), n = 1, 6,
2
γn > 0 for n > 6. It

can be shown that the vectors
k

W (n)(x) are regular in the domain D.
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5 Lemmas on the Order of Fourier Coefficients

Lemma 1 For any six-component vector Φ(x) satisfying the conditions Φ ∈ C0(D),
∂Φ
∂xi
∈ L2(D), i = 1, 2, 3; Φ|S = 0 the inequality

∞∑
n=1

Φ2
n

1
γn ≤

∫
D

E(κ−1Φ,κ−1Φ)dx, (12)

where

Φn =

∫
D

Φ(x)
1

W (n)(x)dx,

is valid. In particular, it follows from the above lemma that the numerical series in
the left-hand side of (12) converges.

Proof. Applying Green’s formula (11) to the vectors V ′ = κ−1Φ(x) and V =

κ−1
1

W (n)(x) and taking into account the condition Φ|S = 0, we obtain∫
D

E(κ−1Φ,κ−1
1

W (n))dx =
1
γnΦn. (13)

In particular, assuming in (13) that Φ =
1

Wm, we obtain∫
D

E(κ−1
1

W (m),κ−1
1

W (n))dx =

{
1
γn for m = n,

0 for m 6= n.
(14)

Consider now a nonnegative value

J =

∫
D

E(κ−1V,κ−1V )dx

and assume V (x) = Φ(x)−
n0∑
n=1

Φn
1

W (n)(x), then simple calculations show that

J =

∫
J
E(κ−1Φ,κ−1Φ)dx+

n0∑
m,n=1

∫
D

E(κ−1
1

W (m),κ−1
1

W (n))dx

−2

n0∑
n=1

Φn

∫
D

E(κ−1Φ,κ−1
1

W (n))dx. (15)

Taking into account (13) and (14), from (15) we find that

n0∑
n=1

Φ2
n

1
γn ≤

∫
D

E(κ−1Φ,κ−1Φ)dx,

which proves our lemma.
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Lemma 2 For any six-component vector Φ(x) satisfying the conditions Φ ∈ C0(D),
∂Φ
∂xi
∈ L2(D), i = 1, 2, 3, the inequality

∞∑
n=1

Φ2
n

2
γn ≤

∫
D

E(κ−1Φ,κ−1Φ)dx, (16)

where

Φn =

∫
D

Φ(x)
2

W (n)(x)dx,

is valid.

Proof. Applying Green’s formula to the vectors V ′ = κ−1Φ(x) and V =

κ−1
2

W (n)(x) and taking into account the condition T
2

W (n)|S = 0, we obtain∫
D

E(κ−1Φ,κ−1
2

W (n))dx =
2
γnΦ.

Repeating further word for word the proof of Lemma 1, we will get inequality (16).

Lemma 3 For any six-component vector Φ(x) satisfying the conditions 1) Φ ∈
C1(D), 2) ∂2Φ

∂xi∂xj
∈ L2(D) and 3) Φ|S = 0 for the problem (I)F,ϕ,ψ and the con-

dition TΦ|S = 0 for the problem (II)F,ϕ,ψ, the inequality

∞∑
n=1

Φ2
n

k
γ2 ≤

∫
D

|M̃Φ|2dx, k = 1, 2, (17)

is valid.

In particular, it follows from the above theorem that the numerical series in the
left-hand side (17) converges.
Proof. Applying Green’s formula (1) to the vectors κ−1Φ(x) and

κ−1
k

W (n)(x) and taking in each of the cases the boundary conditions Φ(x) and
k

W (n)(x) on S, we obtain∫
D

M̃Φ
k

W (n)dx = −kγnΦn, k = 1, 2,

whence

(M̃Φ)n = −kγnΦn, k = 1, 2. (18)

For M̃Φ(x), we write the Bessel’s inequality

∞∑
n=1

(M̃Φ)2
n ≤

∫
D

|M̃Φ|2dx. (19)

Taking into account (18), from (19) we get (17).
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6 Formal Scheme of the Fourier Method

We denote ϕ̃(x) = κϕ(x), ψ̃(x) = κψ(x). Let Ṽ I(x, t) be a solution of the problem

(I)F̃ ,ϕ̃,ψ̃. We write the representation Ṽ I(x, t) = Ṽ 1(x, t) + Ṽ 2(x, t), where Ṽ 1(x, t)

is a solution of the problem (I)0,ϕ̃,ψ̃, and Ṽ 2(x, t) is that of the problem (I)F̃ ,0,0.

Applying to the problem (I)0,ϕ̃,ψ̃ a formal scheme of the Fourier method, we obtain

Ṽ 1(x, y) =

∞∑
n=1

1

W (n)(x)
(
ϕ̃n cos

√
1
γnt+

ψ̃n√
1
γ
n

sin

√
1
γnt
)
,

where

ϕ̃n =

∫
D

ϕ̃(x)
1

W (n)(x)dx, ψ̃n =

∫
D

ψ̃(x)
1

W (n)(x)dx.

Formally, we decompose Ṽ 2(x, t) and F̃ (x, t) into a series by the system

(
1

W (n)(x))∞n=1:

Ṽ 2(x, t) =

∞∑
n=1

Ṽn
2(t)

1

W (n)(x), F̃ (x, t) =

∞∑
n=1

F̃n(t)
1

W (n)(x),

We get

Ṽ 2(x, t) =

∞∑
n=1

1

W (n)(x)
1√
1
γn

∫ t

0

F̃n(τ) sin

√
1
γn(t− τ)dτ.

Consequently, a solution of the problem (I)F̃ ,ϕ̃,ψ̃ is formally looks as follows:

Ṽ I(x, t) =

∞∑
n=1

1

W (n)(x)
(
ϕ̃n cos

√
1
γnt+

ψ̃n√
1
γn

sin

√
1
γnt
)

+

∞∑
n=1

1

W (n)(x)
1√
1
γn

∫ t

0

F̃n(τ) sin

√
1
γn(t− τ)dτ. (20)

Applying Green’s formula (2) to the vectors κ−1ϕ̃(x) and

κ−1
1

W (n)(x) and taking into account that ϕ̃|S =
1

W (n)|S = 0, we obtain∫
D

M̃ϕ̃(x)
1

W (n)(x) = −1
γnϕ̃n,

that is,

(M̃ϕ̃)n = −1
γnϕ̃n. (21)
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We apply now formula (2) to the vectors κ−1M̃ϕ̃(x) and κ−1
1

W (n)(x) and take

into account that M̃ϕ̃|S =
1

W (n)|S = 0. Thus we get

(M̃2ϕ̃)n = −1
γn(M̃ϕ̃)n,

whence by virtue of (21), we obtain

ϕ̃n =
(M̃2ϕ̃)n

1
γ2
n

. (22)

Analogously, we find that

ψ̃n = − (M̃ψ̃)n
1
γn

, F̃n(t) = − (M̃F̃ )n(t)
1
γn

. (23)

In view of (22) and (23), (20) takes the form

Ṽ I(x, t) =

∞∑
n=1

1

W (n)(x)
1
γn

2
(M̃2ϕ̃)n cos

√
1
γnt

−
∞∑
n=1

1

W (n)(x)
1
γn

3/2
(M̃ϕ̃)n sin

√
1
γnt

−
∞∑
n=1

1

W (n)

1
γn

3/2

∫ t

0

(M̃F̃ )n(τ) sin

√
1
γn(t− τ)dτ. (24)

Let Ṽ II(x, t) be a solution of the problem (II)F̃ ,ϕ̃,ϕ̃. Then, analogously, we get

Ṽ II(x, t) =

6∑
n=1

χ(n)(x)(ϕ̃n + tψ̃n) +

∞∑
n=7

2

W (n)(x)
2
γn

2
(M̃2ϕ̃)n cos

√
2
γnt

−
∞∑
n=7

2

W (n)(x)
2
γn

3/2
(M̃ψ̃)n sin

√
2
γnt+

6∑
n=1

χ(n)(x)

∫ t

0

(∫ t

0

F̃n(τ)dτ

)
dt

−
∞∑
n=7

2

W (n)(x)
2
γn

3/2

∫ t

0

(M̃F̃ )n(τ) sin

√
2
γn(t− τ)dτ. (25)

7 Justification of the Fourier Method

To justify the Fourier method, we have to prove that the series appearing in (24)
and (25) and those obtained by means of a single termwise differentiation of these
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series converge uniformly in the closed cylinder Ω, while the series obtained by a
double termwise differentiation of these series converge uniformly in the cylinder Ω.

We investigate here only the series appearing in (24) because those appearing in
(25) are investigated analogously. First, we investigate the series

∞∑
n=1

W (n)(x)

γ2
n

(M̃2ϕ̃)n cos
√
γnt, (26)

where for the sake of simplicity we adopt
1

W (n) = W (n) and
1
γ = γn.

Simultaneously, we investigate the series obtained by a single and double termwise
differentiation with respect to t of the series (26),

−
∞∑
n=1

W (n)(x)

γ
3/2
n

(M̃2ϕ̃)n sin
√
γnt, (27)

∞∑
n=1

W (n)(x)

γn
(M̃2ϕ̃)n cos

√
γnt. (28)

Estimate a residual of the series (26) by using the Cauchy-Bunyakowski’s inequal-
ity and majorizing simultaneously the cosine by unity. We have∣∣∣∣m+p∑

n=m

W (n)(x)

γ2
n

(M̃2ϕ̃)n cos
√
γnt

∣∣∣∣ ≤ [m+p∑
n=m

|W (n)(x)|2

γ4
n

m+p∑
n=m

(M̃2ϕ̃)2
n

]1/2

. (29)

Since M̃2ϕ̃ ∈ L2(D), by virtue of Bessel’s inequality we obtain

∞∑
n=1

(M̃2ϕ̃)2
n ≤

∫
D

|M̃2ϕ̃|2dx. (30)

In view of (30), it follows from (29) that to prove that the series (26) converges
uniformly in Ω, it suffices to state that the sum of the series

∞∑
n=1

|W (n)(x)|2

γ4
n

(31)

exists and is uniformly bounded in D.
The Bessel’s inequality provides us with

∞∑
n=1

|W (n)(x)|2

γ2
n

≤
∫
D

|K(x, y)|2dy, (32)

where K(x, y) =
1

K(x, y) = κ
1

G(x, y)κ. By virtue of (8), it follows from (32) that the
sum of the series

∞∑
n=1

|W (n)(x)|2

γ2
n

(33)
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exists and is uniformly bounded in D.
The same conclusion is especially valid for the series (31). The series (27) and

(28) are investigated analogously.
Consider now the series obtained by a single and double termwise differentiation

with respect to x of the series (26),

∞∑
n=1

∂W (n)(x)
∂xi

γ2
n

(M̃2ϕ̃)n cos
√
γnt, i = 1, 2, 3; (34)

∞∑
n=1

∂2W (n)(x)
∂xi∂xj

γ2
n

(M̃2ϕ̃)n cos
√
γnt, i = 1, 2, 3. (35)

Consider the iterated kernel K(2)(x, y) for the kernel K(x, y). Then

W (n)(x) = γ2
n

∫
D

K(2)(x, y)W (n)(y)dy.

The Bessel’s inequality results in

∞∑
n=1

|∂W
(n)(x)
∂xi

|2

γ4
n

≤
∫
D

∣∣∣∂K(2)(x, y)

∂xi

∣∣∣2dy, i = 1, 2, 3; (36)

∞∑
n=1

|∂
2W (n)(x)
∂xi∂xj

|2

γ4
n

≤
∫
D

∣∣∣∂2K(2)(x, y)

∂xi∂xj

∣∣∣2dy, i, j = 1, 2, 3. (37)

By virtue of (9), it follows from (36) that the sum of the series appearing in the
left-hand side of (36) exists and is uniformly bounded in D.

On the strength of (10), it follows from (37) that the sum of the series appearing
in the left-hand side of (37) exists and is uniformly bounded in D′, where D′ ⊂ D is
an arbitrary closed domain lying strictly in D.

Repeating the above reasoning, we can prove that the series (34)
converges uniformly in Ω, and the series (35) converges uniformly in Ω.
Let us now pass to the investigation of the second series (24). We rewrite it in the

form
∞∑
n=1

W (n)(x)

γ2
n

((M̃ψ̃)n
√
γn) sin

√
γnt. (38)

Comparing the series (38) and (26), it is not difficult to notice that they are of the
same structure, the only difference is that the cosine is replaced by the sine and
(M̃2ϕ̃)n is replaced by (M̃ϕ̃)n

√
γn. In investigating the series (26) we have used the

fact that the series
∞∑
n=1

(M̃2ϕ̃)2
n
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converges. As for the convergence of the series

∞∑
n=1

(M̃ψ̃)2
nγn,

it follows directly from the above-proven Lemma 1. Consequently, we can apply the
above scheme to the series (38).

Finally, we investigate the third series appearing in (24) and rewrite it in the form

∞∑
n=1

W (n)(x)

γ2
n

∫ t

0

(M̃F̃ )n(τ)
√
γn sin

√
γn(t− τ)dτ. (39)

It is clear from the above reasoning that we have to prove the convergence of the
series

∞∑
n=1

∫ t

0

((M̃F̃ )n(τ))2γndτ.

The last statement follows directly from Lemma 1 and the well-known theorem on
the limiting passage under the Lebesgue integral sign.

It remains for us to prove that the Fourier series

∞∑
n=1

F̃n(t)W (n)(x) (40)

of the vector-function F̃ (x, t) converges uniformly in the closed cylinder Ω. Consider
the series

∞∑
n=1

W (n)(x)

∫ t

0

dF̃n(τ)

dτ
dτ . (41)

and estimate the residual of the series (43) by means of the Cauchy-Bunyakowski’s
inequality ∣∣∣∣m+p∑

n=m

W (n)(x)

∫ t

0

dF̃n(τ)

dτ
dτ

∣∣∣∣
≤
[m+p∑
n=m

|W (n)(x)|2

γ2
n

m+p∑
n=m

∫ e

0

∣∣∣dF̃n(τ)

dτ

∣∣∣2γ2
ndτ

]1/2

(42)

Using Lemma 3 for the vector-function ∂F̃ (x,t)
∂t and the theorem on the limiting

passage under the integral sign, we can state that the series

∞∑
n=1

∫ e

0

∣∣∣dF̃n(τ)

dτ

∣∣∣2γ2
ndτ.

converges.
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Thus taking into account the fact that the sum of the series (31) is uniformly
bounded, it follows from (7) that the series (41) converges uniformly in Ω.

From (41), we have

∞∑
n=1

W (n)(x)

∫ t

0

dF̃n(τ)

dτ
dτ =

∞∑
n=1

F̃n(t)W (n)(x) −
∞∑
n=1

F̃n(0)W (n)(x). (43)

Thus it is clear from (43) that to prove that the series (40) converges uniformly in Ω,
it suffices to prove that the series

∞∑
n=1

F̃n(0)W (n)(x) (44)

converges uniformly in D. We estimate the residual of the series (44),∣∣∣∣m+p∑
n=m

F̃n(0)W (n)(x)

∣∣∣∣ ≤ [m+p∑
n=m

|W (n)(x)|2

γ2
n

m+p∑
n=m

F̃n
2(0)γ2

n

]1/2

. (45)

Using Lemma 3 for F̃ (x, 0), we immediately find that the series

∞∑
n=1

F̃n
2(0)γn

2.

converges uniformly. Taking now into account that the sum of the series (31) is
uniformly bounded, we can conclude from (45) that the series (44) converges uniformly
in D. Consequently, a full justification of the Fourier method for the problems under
consideration is complete.

Thus we have proved the following

Theorem 2 If F , ϕ and ψ are the given vector-functions satisfying the conditions
mentioned in item 2, then the series (24) and (25) are the regular (classical) solutions
of the problems (I)F,ϕ,ψ and (II)F,ϕ,ψ, respectively.

References
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